بررسی کارایی کیتوزان در جذب آنتیبیوتیک مترونیدازول از محیطهای آبی: مدلینگ با استفاده از روش رویه سطح پاسخ براساس طراحی نقاط مرکزی، مطالعات ایزوترم و سینتیک
DOI::
https://doi.org/10.22100/jkh.v14i1.2175کلمات کلیدی:
مترونیدازول، کیتوزان، جذب، محیطهای آبیچکیده
مقدمه: وجود آنتیبیوتیکها در آبهاي آشامیدنی سبب مشکلات بهداشتی برای انسان میگردد. مطالعه حاضر توانایی کیتوزان در جذب آنتیبیوتیک مترونیدازول از محیطهای آبی را مورد بررسی قرار داد.
مواد و روشها: اين مطالعه در مقیاس آزمایشگاهی در یک سیستم ناپیوسته انجام پذیرفت. تأثیر متغیرهای ورودی شامل pH، زمان تماس، دوز کیتوزان و غلظت مترونیدازول در غالب طراحی نقاط مرکزی براساس روش رویه پاسخ بر روی کارآیی جذب مورد بررسی قرار گرفتند. مطالعات ایزوترمی و سینتیکی پس از بهینهسازی متغیرهای ورودی انجام پذیرفت. بهمنظور سنجش غلظت باقیمانده مترونیدازول از اسپکتروفوتومتر 5000 DR در طول موج nm 320 استفاده شد.
نتایج: نتایج نشان داد فرآیند جذب از یک مدل درجه دوم چند جملهای با مقادیر F و P بهترتیب 936/990 و 0001/0>P و 9989/0=R2 و 9979/0=Adj-R2 پیروی میکند. شرایط بهینه 74/4 =pH، min60=زمان تماس، g/L5/1=دوز کیتوزان و mg/L20= غلظت مترونیدازول بهدست آمد که در این شرایط بالاترین راندمان حذف حدود 85% حاصل گردید. همچنین فرآیند جذب از ایزوترم لانگمویر و سینتیک شبه درجه اول با مقادیر R2 بهترتیب 9965/0 و 9859/0 پیروی میکند.
نتیجهگیری: در این مطالعه مشاهده شد که کیتوزان دارای کارآیی بالایی در جذب مترونیدازول دارد، بنابراین کیتوزان را میتوان بهعنوان یک جاذب طبیعی با پتانسیل بالا در جذب مترونیدازول و سایر آنتیبیوتیکهای مشابه از محیطهای آبی پیشنهاد داد.
مراجع
Göbel A, Thomsen A, McArdell CS, Joss A, Giger W. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environ Sci Technol 2005;39:3981-9. doi: 10.1021/es048550a
Chiou M-S, Chuang G-S. Competitive adsorption of dye metanil yellow and RB15 in acid solutions on chemically cross-linked chitosan beads. Chemosphere 2006;62:731-40. doi: 10.1016/j.chemosphere.2005.04.068
Dehghani MH, Ghadermazi M, Bhatnagar A, Sadighara P, Jahed-Khaniki G, Heibati B, et al. Adsorptive removal of endocrine disrupting bisphenol A from aqueous solution using chitosan. Journal of Environmental Chemical Engineering 2016;4:2647-55. doi: 10.1016/j.jece.2016.05.011
Seo PW, Khan NA, Jhung SH. Removal of nitroimidazole antibiotics from water by adsorption over metal–organic frameworks modified with urea or melamine. Chemical Engineering Journal 2017;315:92-100. doi: 10.1016/j.cej.2017.01.021
Li J-M, Meng X-G, Hu C-W, Du J. Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan. Bioresource Technology 2009;100:1168-73. doi: 10.1016/j.biortech.2008.09.015
Qadri S, Ganoe A, Haik Y. Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. Journal of Hazardous Materials 2009;169:318-23. doi: 10.1016/j.jhazmat.2009.03.103
Wu J, Yu H-Q. Biosorption of 2, 4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: Isotherms, kinetics and thermodynamics. J Hazard Mater 2006;137:498-508. doi: 10.1016/j.jhazmat.2006.02.026
Sarı A, Tuzen M. Equilibrium, thermodynamic and kinetic studies on aluminum biosorption from aqueous solution by brown algae (Padina pavonica) biomass. J Hazard Mater 2009;171:973-9. doi: 10.1016/j.jhazmat.2009.06.101
Rivera-Utrilla J, Prados-Joya G, Sánchez-Polo M, Ferro-García M, Bautista-Toledo I. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. J Hazard Mater 2009;170:298-305. doi: 10.1016/j.jhazmat.2009.04.096
Shaarani F, Hameed B. Batch adsorption of 2, 4-dichlorophenol onto activated carbon derived from agricultural waste. Desalination 2010;255:159-64. doi:10.1016/j.desal.2009.12.029
Wang J-P, Feng H-M, Yu H-Q. Analysis of adsorption characteristics of 2, 4-dichlorophenol from aqueous solutions by activated carbon fiber. J Hazard Mater 2007;144:200-7. doi: 10.1016/j.jhazmat.2006.10.003
Lindberg R, Jarnheimer P-Å, Olsen B, Johansson M, Tysklind M. Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards. Chemosphere 2004;57:1479-88. doi: 10.1016/j.chemosphere.2004.09.015
Çalışkan E, Göktürk S. Adsorption characteristics of sulfamethoxazole and metronidazole on activated carbon. Separation Science and Technology 2010;45:244-55. doi: 10.1080/01496390903409419
Sepehr MN, Al-Musawi TJ, Ghahramani E, Kazemian H, Zarrabi M. Adsorption performance of magnesium/aluminum layered double hydroxide nanoparticles for metronidazole from aqueous solution. Arabian Journal of Chemistry 2017;10:611-23. doi: 10.1016/j.arabjc.2016.07.003
Cunningham VL, Buzby M, Hutchinson T, Mastrocco F, Parke N, Roden N. Effects of human pharmaceuticals on aquatic life: next steps. ACS pub;2006. doi: 10.1021/es063017b
Le-Minh N, Khan S, Drewes J, Stuetz R. Fate of antibiotics during municipal water recycling treatment processes. Water Research 2010;44:4295-323. doi: 10.1016/j.watres.2010.06.020
Zhou LJ, Ying GG, Liu S, Zhao JL, Yang B, Chen ZF, et al. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Sci Total Environ 2013;452:365-76. doi: 10.1016/j.scitotenv.2013.03.010
Ranjan D, Talat M, Hasan S. Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J Hazard Mater 2009;166:1050-9. doi: 10.1016/j.jhazmat.2008.12.013
Sulaymon AH, Mohammed AA, Al-Musawi TJ. Removal of lead, cadmium, copper, and arsenic ions using biosorption: equilibrium and kinetic studies. Desalination and Water Treatment 2013;51:4424-34. doi: 10.1080/19443994.2013.769695
Zazouli MA, Balarak D, Mahdavi Y, Barafrashtehpour M, Ebrahimi M. Adsorption of bisphenol from industrial wastewater by modified red mud. Journal of Health and Development 2013;2:1-11.
Mahdi Nejad M, Bina B, Nik Aein M, Movahedian Attar H. Effectiveness of alum in injection chitosan and moringa oleifera in removal of turbidity and bacteria from turbid water. J of Gorgan University of Medical Sciences 2009;11:60-9.
Nadavala SK, Swayampakula K, Boddu VM, Abburi K. Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan–calcium alginate blended beads. Journal of Hazardous Materials 2009;162:482-9. doi: 10.1016/j.jhazmat.2008.05.070
چاپ شده
شماره
نوع مقاله
مجوز
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.