Quantification of Enterococcus Faecalis and Fusobacterium Nucleatum in Healthy Colorectal Tissues Compared with Polyp and Cancer Colorectal Tissues
DOI:
https://doi.org/10.22100/jkh.v18i2.2682Abstract
Introduction: Colorectal Cancer (CRC) is the second most common cancer in men and women. Recently, investigations have revealed a much larger role for epigenetic and non-hereditary factors in CRC incidence than hereditary factors. Among all non-hereditary factors, gut microbiota alterations are the most prominent factor in the development of CRC. This work aimed to study the quantification of Enterococcus faecalis and Fusobacterium nucleatum in healthy colorectal tissues compared with polyp and cancer colorectal tissues of Iranian peoples.
Methods: In this case-control study, 21 biopsy samples of normal colon tissue, 21 polyp tissues, and 19 tumor tissues were investigated. To quantify the Enterococcus faecalis and Fusobacterium nucleatum in our samples, we employed the 16SrRNA-specific gene in Real-Time Quantitative PCR method.
Results: The Quantitative Real-Time PCR results demonstrated a significant increase (P-value<0.05) in the population of both bacterial species, Enterococcus faecalis and Fusobacterium nucleatum in tumor and polyp tissues compared with normal samples. In addition, the Spearman index for these two species was 0.7634, which refers to a synergistic relationship between these species in the colon environment.
Conclusion: Collectively, by the progression of CRC, the abundance of Enterococcus faecalis and Fusobacterium nucleatum, will be increasing. In other words, the enrichment of these species can induce the development and progression of CRC and might be a sign of its occurrence.
References
Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RG, Barzi, A, et al. Colorectal cancer statistics. CA: A Cancer Journal for Clinicians 2017;67:177-93. doi: 10.3322/caac.21395
Joachim C, Macni J, Drame M, Pomier A, Escarmant P, Veronique-Baudin J, et al. Overall survival of colorectal cancer by stage at diagnosis: data from the martinique cancer registry. Medicine 2019;98. doi: 10.1097/MD.0000000000016941
Mojarad EN, Kuppen PJ, Aghdaei HA, Zali MR. The CpG island methylator phenotype (CIMP) in colorectal cancer. GHFBB 2013;6:120.
MacFarlane AJ, Stover PJ. Convergence of genetic, nutritional and inflammatory factors in gastrointestinal cancers. Nutrition reviews. 2007;65:S157-66. doi: 10.1111/j.1753-4887.2007.tb00355.x
de Almeida CV, Taddei A, Amedei A. The controversial role of Enterococcus faecalis in colorectal cancer. Therapeutic Advances in Gastroenterology 2018;11:1756284818783606. doi: 10.1177/1756284818783606
Jobin C. Colorectal cancer: looking for answers in the microbiota. Cancer Discovery 2013;3:384-7. doi: 10.1158/2159-8290.CD-13-0042
Mira-Pascual L, Cabrera-Rubio R, Ocon S, Costales P, Parra A, Suarez A, et al. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. Journal of Gastroenterology 2015;50:167-79. doi: 10.1007/s00535-014-0963-x
Sun J, Kato I. Gut microbiota, inflammation and colorectal cancer. Genes & Diseases 2016;3:130-43, doi: 10.1016/j.gendis.2016.03.004
Thursby E, Juge N. Introduction fo the human gut flora. Biochem J 2017;474:1823-36. doi: 10.5507/bp.2017.051
Stary L, Mezerova K, Skalicky P, Zboril P, Raclavsky V. Are we any closer to screening for colorectal cancer using microbial markers? A critical review. Biomedical Papers 2017;161:333-8. doi: 10.5507/bp.2017.051
Rezasoltani S, Asadzadeh-Aghdaei H, Nazemalhosseini-Mojarad E, Dabiri H, Ghanbari R, Zali MR. Gut microbiota, epigenetic modification and colorectal cancer. IJM 2017;9:55.
Kim M, Vogtmann E, Ahlquist DA, Devens ME, Kisiel JB, Taylor WR, et al. Fecal metabolomic signatures in colorectal adenoma patients are associated with gut microbiota and early events of colorectal cancer pathogenesis. MBio 2020;11:e03186-19. doi: 10.1128/mBio.03186-19
Rezasoltani S, Bashirzadeh DA, Mojarad EN, Aghdaei HA, Norouzinia M, Shahrokh S. Signature of gut microbiome by conventional and advanced analysis techniques: advantages and disadvantages. MEJDD 2020;12:5. doi: 10.15171/mejdd.2020.157
Yang T, Owen JL, Lightfoot YL, Kladde MP, Mohamadzadeh M. Microbiota impact on the epigenetic regulation of colorectal cancer. Trends in Molecular Medicine 2013;19:714-25.doi: 10.1016/j.molmed.2013.08.005
Dahmus JD, Kotler DL, Kastenberg DM, Kistler CA. The gut microbiome and colorectal cancer: a review of bacterial pathogenesis. JGO 2018;9:769. doi: 10.21037/jgo.2018.04.07
Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, et al. Potential of fecal microbiota for early‐stage detection of colorectal cancer. Molecular Systems Biology 2014;10:766. doi: 10.15252/msb.20145645
Shang FM, Liu HL. Fusobacterium nucleatum and colorectal cancer: A review. WJGO 2018;10:71. doi: 10.4251/wjgo.v10.i3.71
Baxter NT, Zackular JP, Chen GY, Schloss PD. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome 2014;2:1-1. doi: 10.1186/2049-2618-2-20
Castillo M, Martín-Orúe SM, Manzanilla EG, Badiola I, Martín M, Gasa J. Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Veterinary Microbiology 2006;114:165-70. doi: 10.1016/j.vetmic.2005.11.055
Maeda H, Fujimoto C, Haruki Y, Maeda T, Kokeguchi S, Petelin M,et al. Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunology & Medical Microbiology 2003;39:81-6. doi: 10.1016/S0928-8244(03)00224-4
Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host & Microbe 2014;15:317-28. doi: 10.1016/j.chom.2014.02.007
Kashani N, Abadi AB, Rahimi F, Forootan M. FadA-positive Fusobacterium nucleatum is prevalent in biopsy specimens of Iranian patients with colorectal cancer. New Microbes and New Infections 2020;34:100651. doi: 10.1016/j.nmni.2020.100651
Allali I, Delgado S, Marron PI, Astudillo A, Yeh JJ, Ghazal H, et al. Gut microbiome compositional and functional differences between tumor and non-tumor adjacent tissues from cohorts from the US and Spain. Gut Microbes 2015;6:161-72. doi: 10.1080/19490976.2015.1039223
Loktionov A. Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins?. WJGO 2020;12:124. doi: 10.4251/wjgo.v12.i2.124
Liu W, Zhang R, Shu R, Yu J, Li H, Long H, at al. Study of the relationship between microbiome and colorectal cancer susceptibility using 16SrRNA sequencing. BioMed Research International 2020. doi: 10.1155/2020/7828392
Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, et al. Human gut microbiome and risk for colorectal cancer. JNCI 2013;105:1907-11. doi: 10.1155/2020/7828392
Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 2017;358:1443-8. doi:10.1126/science.aal5240
Adelstein BA, Macaskill P, Chan SF, Katelaris PH, Irwig L. Most bowel cancer symptoms do not indicate colorectal cancer and polyps: a systematic review. BMC Gastroenterology 2011;11:1-0. doi: 10.1186/1471-230X-11-65
Huang CC, Shen MH, Chen SK, Yang SH, Liu CY, Guo JW, et al. Gut butyrate-producing organisms correlate to Placenta Specific 8 protein: Importance to colorectal cancer progression. Journal of Advanced Research 2020;22:7-20. doi: 10.1016/j.jare.2019.11.005
Garza DR, Taddese R, Wirbel J, Zeller G, Boleij A, Huynen MA, Dutilh BE. Metabolic models predict bacterial passengers in colorectal cancer. Cancer & Metabolism 2020;8:1-3. doi: 10.1186/s40170-020-0208-9
Lennard KS, Goosen RW, Blackburn JM. Bacterially-associated transcriptional remodelling in a distinct genomic subtype of colorectal cancer provides a plausible molecular basis for disease development. PLoS One 2016;11:e0166282. doi: 10.1371/journal.pone.0166282
Kolenbrander PE, London J. Adhere today, here tomorrow: oral bacterial adherence. Journal of Bacteriology 1993;175:3247-52. doi: 10.1128/jb.175.11.3247-3252.1993
Allen-Vercoe E, Jobin C. Fusobacterium and Enterobacteriaceae: important players for CRC?. Immunology Letters 2014;162:54-61. doi: 10.1016/j.imlet.2014.05.014
Johnson EM, Flannagan SE, Sedgley CM. Coaggregation interactions between oral and endodontic Enterococcus faecalis and bacterial species isolated from persistent apical periodontitis. JOE 2006;32:946-50. doi: 10.1016/j.joen.2006.03.023
Diaz PI, Zilm PS, Rogers AH. The response to oxidative stress of Fusobacterium nucleatum grown in continuous culture. FEMS Microbiology Letters 2000;187:31-4. doi: 10.1111/j.1574-6968.2000.tb09132.x
Steeves CH, Potrykus J, Barnett DA, Bearne SL. Oxidative stress response in the opportunistic oral pathogen Fusobacterium nucleatum. Proteomics 2011;11:2027-37. doi: 10.1002/pmic.201000631
Murray BE. Diversity among multidrug-resistant enterococci. Emerging Infectious Diseases 1998;4:37. doi: 10.3201/eid0401.980106
Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 1993;15:532-4.
Fukugaiti MH, Ignacio A, Fernandes MR, Ribeiro Júnior U, Nakano V, Avila-Campos MJ. High occurrence of Fusobacterium nucleatum and Clostridium difficile in the intestinal microbiota of colorectal carcinoma patients. BJM 2015;46:1135-40. doi: 10.1590/S1517-838246420140665
Rezasoltani S, Aghdaei HA, Dabiri H, Sepahi AA, Modarressi MH, Mojarad EN. The association between fecal microbiota and different types of colorectal polyp as precursors of colorectal cancer. Microbial Pathogenesis 2018;124:244-9. doi: 10.1016/j.micpath.2018.08.035
Rinttilä T, Lyra A, Krogius-Kurikka L, Palva A. Real-time PCR analysis of enteric pathogens from fecal samples of irritable bowel syndrome subjects. Gut Pathogens 2011;3:1-9. doi: 10.1186/1757-4749-3-6
Gueimonde M. Detection and enumeration of gastrointestinal microorganisms miguel gueimonde and clara de los reyes-gavilan. Handbook of Probiotics and Prebiotics 2009;25. doi: 10.1002/9780470432624.ch1
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.