اثر بربرين ‌هيدروكلرايد بر اختلالات عملکرد حرکتي در موش‌هاي صحرايي ديابتي‌شده با استرپتوزوتوسين

نویسندگان

  • Mahnaz Mesripour Alavijeh
  • Hamid Kalalian Moghaddam
  • Gholamhasan Vaezi

DOI::

https://doi.org/10.22100/jkh.v8i4.55

کلمات کلیدی:

ديابت مليتوس، بربرين هيدروکلرايد، عملکرد حرکتي، مازy، سطح شيب‌دار، بارفيکس.

چکیده

مقدمه: بيماري ديابت منجر‌به بروز اختلالات حرکتي گرديده و بربرين هيدروكلرايد، آلكالوئيدي با آثار متعدد ضد ديابتي و آنتي‌اكسيدان مي‌باشد. اين مطالعه با هدف بررسي تأثير بربرين هيدروکلرايد بر اختلالات حرکتي ناشي از ديابت در موش‌هاي صحرايي ديابتي‌شده با استرپتوزوتوسين طراحي شده است.

مواد و روش‌ها: در اين مطالعه، 40 سر موش صحرايي نر نژاد ويستار انتخاب و به‌طور تصادفي به پنج گروه مساوي: شاهد، شاهد تيمارشده با بربرين هيدروكلرايد (mg/kg100)، ديابتي و ديابتي تيمارشده با بربرين‌هيدروكلرايد (mg/kg100 و 50) تقسيم شدند. ديابت با تزريق استرپتوزوتوسين با دوز 55 ميلي‌گرم/ كيلوگرم به‌صورت درون صفاقي القاء گرديد. يك هفته پس از تزريق استرپتوزوتوسين، تيمار با بربرين هيدروكلرايد با دوز 50 و 100 ميلي‌گرم/روز به‌مدت شش هفته به‌صورت خوراكي انجام شد. اندازه‌گيري قندخون نيز در هفته‌هاي 1، 3، 5 و 7 ازطريق سياهرگ دمي به‌عمل آمد و در پايان هفته ششم و هفتم، گروه‌ها با آزمون‌هاي رفتاري، سطح شيب‌دار، بارفيکس و ماز y مورد ارزيابي قرارگرفتند.

نتايج: گروه ديابتي تيمارشده با بربرين هيدروكلرايد (mg/kg100 و 50) بهبودي قابل‌توجهي را در مقايسه با گروه ديابتي در آزمون‌هاي سطح شيب‌دار، بارفيکس و ماز y نشان دادند.

نتيجه‌گيري: تجويز بربرين هيدروكلرايد به‌مدت شش هفته منجربه بهبود اختلالات حرکتي در موش‌هاي صحرايي ديابتي‌شده با استرپتوزوتوسين مي‌شود.

مراجع

Guyton AC, Hall JE, Medical physiology, Elsever Sandes. 11th ed. 2006.p.1001-1008.

Pop-Busui1 R, Sima A, Stevens M. Diabetic neuropathy and oxidative stress. Diabetes Metab Res Rev 2006;22:257-273.

Jakus V, Rietbrock N. Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res 2004; 53:131-42.

Jawa A, Kcomt J, Fonseca VA. Diabetic neuropathy and retinopathy. Med Clin Nort America 2004;88(4):1001-36.

Wandell PE. Quality of life of patients with diabetes mellitus. An overview of research in primary health care in the Nordic countries. Scand J Prim Health Care 2005;23(2):68-74.

Yagihashi S, Yamagishi SI, Wada Ri R, Baba M, Hohman TC, Yabe-Nishimura C, Kokai Y. Neuropathy in diabetic mice over expressing human aldose reductase and effects of aldose reductase inhibitor. Brain 2001;124:2448-2458.

Pop-Busui R, Marinescu V, Van Huysen C, Li F, Sullivan K, Greene DA, Larkin D, Stevens MJ. Dissection of metabolic, vascular and nerve conduction interrelationships in experimental diabetic neuropathy by cyclooxygenase inhibition and acetyl- L- carnitine administration. Diabetes 2002;51:2619-2628.

Kellogg A, Pop-Busui R. Peripheral nerve dysfunction in experimental diabetes is mediated by cyclooxygenase-2 and oxidative stress. Antioxid Redox Signal 2005;17:1521-1529.

Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404:787-790.

Liu Q, Chen L, Hu L, Guo Y, Shen X. Small molecules from natural sources, targeting signaling pathways in diabetes. Biochimica et Biophysica Acta 2010;1799:854-865.

Galer BS, Gianas A, Jensen MP. Painful diabetic polyneuropathy: epidemiology, pain description, and quality of life. Diabetes Res Clin Pract 2000;47:123-128.

Andersen H, Stalberg E, Gjerstad MD, Jakobsen J: Association of muscle strength and electrophysiological measures of reinnervation in diabetic neuropathy. Muscle Nerve 1998;21:1647-1654.

Biessels GJ, Smale S, Duis SE, Kamal A, Gispen WH. The effect of gamma- linolenic acid-alpha-lipoic acid on functional deficits in the peripheral and centeral nervous system of streptozotocin- diabetic rats.J Neurol Sci 2001;182:99-106.

Emerick AJ, Richards MP, Kartje GL, Neafsey EJ, Stubbs Jr. EB. Experimental diabetes attenuates cerebral cortical-evoked forelimb motor responses. Diabetes 2005;54;2764-2771.

Goodman MH. The pancreas and regulation of metabolism. In Mountcastle VB (ed): Medical Physiology, ed 14. St. Louis, MO, The CV Mosby Co, 1980; pp 1638-1673

Vuddanda PR, Chakraborty S, Singh S. Berberine: a potential phytochemical with multispectrum therapeutic activities. Drugs 2010;10:1297-1307.

Kong WJ, Zhang H, Song DQ, Xue R, Zhao W, Wei J, et al. Berberine reduce insulin resistance through protein kinase C-dependent up regulation of insulin receptor expression. Metabolism 2009;58:109-19.

Zhou J, Zhou S, Tang J, Zhang K, Guang L, Huang Y, et al. Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/ high-fat diet-induced diabetic rats, European Jornal of Pharmacology 606 2009;262-268.

Sharma B, Salunke R, Balomajumder C, Daniel S, Roy P. Anti-diabetic potential of alkaloid rich fraction from. Capparis decidua on diabetic mice. Journal of Ethnopharmacology 2009;127:457- 462.

Wang HD, Lu DX, Qi RB. Therapeutic strategies targeting the LPS signaling and cytokines. Pathophysiology 2009;16:291-296.

Yoo KY, Hwang IK, Kim JD, Kang IJ, Park J, Yi JS, et al. Antiinflammatory effect of the ethanol extract of Berberis koreana in a gerbil model of cerebral ischemia/ reperfusion. Phytother Res 2008;22:1527-1532.

Qu R. Herbology. 1st ed. Shanghai: Shanghai University of Traditional Chinese Medicine Press, 2006.

Zhu F, Qian C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer’s disease. BMC Neurosci 2006;7:78.

Kuznetsova LP, Nikol'skaia EB, Sochilina EE, Faddeeva MD. inhibition of human blood acetylcholinesterase and butyrylcholinesterase by some alkaloids. Journal of Evolutionary Biochemistry and Physiology 2002;38(1):35-39.

Kong LD, Cheng CH, Tan RX. Monoamine oxidase inhibitors from rhizoma of Coptis chinensis. Planta Med 2001;67:74-76.

Kuznetsova LP, Sochilina EE, Faddeeva MD, Iagodina OV. Effect of some isoquinoline alkaloids on enzymatic activity of acetylcholinesterase and monoamine oxidase. Ukr Biokhim Zh 2005;77:147-153.

Peng WH, Lo KL, Lee YH, Hung TH, Lin YC. Berberine produces antidepressant-like effects in the forced swim test and in the tail suspension test in mice. Life Sci 2007;81:933-938.

Peng WH, Wu CR, Chen CS, Chen CF, Leu ZC, Hsieh MT. Anxiolytic effect of berberine on exploratory activity of the mouse in two experimental anxiety models: interaction with drugs acting at 5-HT receptors. Life Sci 2004;75:2451-2462.

Dhir A, Kulkarni SK. Effect of addition of yohimbine (alpha-2-receptor antagonist) to the antidepressant activity of fluoxetine or venlafaxine in the mouse forced swim test. Pharmacology 2007; 80:239-243.

Andersen H, Nielsen S, Mogensen CE, Jakobsen J. Muscle strength in type 2 diabetes. Diabetes 2004;53:1543-1548.

Lesniewski LA, Miller TA, Armstrong RB. Mechanisms of force loss in diabetic mouse skeletal muscle. Muscle Nerve 2003;28: 493-500.

Zhou L, Yang Y, Wang X, Liu S, Shang W, Yuan G, et al. Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism 2007;56:405-412

Wang SH, Wang WJ, Wang XF, Chen W. Effect of astragalus polysaccharides and berberine on carbohydrate metabolism and cell differentiation in 3T3- L1 adipocytes. Zhongguo Zhong Xi Yi Jie He Za Zhi 2004;24:926-928.

Kim SH, Shin EJ, Kim ED, Bayaraa T, Frost SC, Hyun CK, et al. Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes. Biol Pharm Bull 2007;30:2120-2125.

Cheng Z, Pang T, Gu M, Gao AH, Xie CM, Li JY, Nan FJ, Li J. Berberine-stimulated glucose uptake in L6 myotubes involves both AMPK and p38 MAPK. Biochim Biophys Acta 2006;1760:1682-1689.

Zhou LB, Chen MD, Wang X, Song HD, Yang Y, Tang JF, et al. Effect of berberine on the differentiation of adipocyte. Zhonghua Yi Xue Za Zhi 2003;83:338-340228.

Ko BS, Choi SB, Park SK, Jang JS, Kim YE, Park S, et al. Insulin sensitizing and insulinotropic action of berberine from Cortidis rhizoma. Biol Pharm Bull 2005;28:1431-1437.

Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006;55:2256-2264.

Kucukatay V, Agar A, Gumuslu S, Yargiçoglu P. Effect of sulfur dioxide on active and passive avoidance in experimental diabetes mellitus: relation to oxidant stress and antioxidant enzymes. Int J Neurosci 2007;117(8):1091-107.

دانلود

چاپ شده

2013-07-02

شماره

نوع مقاله

مقاله پژوهشي

مقالات بیشتر خوانده شده از همین نویسنده