کورکومین از مرگ سلولی ایجاد شده به واسطه 6-OHDA و اختلال مسیرERK در سلول‌های نوروبلاستومای انسانی جلوگیری می‌کند

نویسندگان

  • Maryam Moosavi1,2 1- استادیار- مرکز تحقیقات علوم اعصاب- دانشگاه علوم پزشکی شیراز- شیراز- ایران.2- استادیار- مرکز تحقیقات نانو فناوری در علوم زيستی و پزشكی- دانشگاه علوم پزشکی شیراز- شیراز- ایران. orcid http://orcid.org/0000-0001-6943-477X
  • Maryam Owjfard3 3- کارشناس- آزمایشگاه مرکزی علوم پایه- برج پژوهشی محمد رسول الله- دانشگاه علوم پزشکی شیراز- شیراز- ایران.
  • Majid Reza Farokhi1

DOI::

https://doi.org/10.22100/jkh.v13i3.1925

کلمات کلیدی:

6-OHDA، پارکینسون، SH-SY5Y ، کورکومین، ERK.

چکیده

مقدمه: کورکومین، یک ماده طبیعی شیمیایی فنولی زرد رنگ مشتق شده از زردچوبه، اثرات محافظتی در مدل‌های حیوانی و سلولی بیماری پارکینسون دارد. مطالعه حاضر با هدف بررسی اینکه آیا کورکومین مانع از اثر6-OHDA در سلول‌های نوروبلاستومای انسانی و سیگنالینگ MAPK می‌شود انجام شد.

مواد و روش‌ها: سلول‌های SH-SY5Y به مدت 24 ساعت با6-OHDA  (50 میکرومتر) درمان شدند. اثر کورکومین (2 و 5/2 میکرومولار) بر روی بقاء سلولی (MTT) و MAPK ها (ERK، JNK و p38) (آزمون وسترل بلات) مورد بررسی قرار گرفت.

نتایج: 6-OHDA باعث کاهش قابل ملاحظه‌ای از بقاء نورونی و کاهش p-ERK شد. نتایج نشان می‌دهد که کورکومین می‌تواند تا حدودی در برابر مرگ سلولی ناشی از6-OHDA و کاهش p-ERK جلوگیری کند.

 نتیجه‌گیری: این یافته‌ها پیشنهاد می‌کنند که بازگرداندن ERK به اثر محافظتی کورکومین در برابر 6-OHDA در سلول‌های نوروبلاستوما انسان مربوط است.

مراجع

Driver JA, Logroscino G, Gaziano JM, Kurth T. Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology 2009;72:432-8. doi:10.1212/01.wnl.0000341769.50075.bb

Morgante L, Morgante F, Moro E, Epifanio A, Girlanda P, Ragonese P, et al. How many parkinsonian patients are suitable candidates for deep brain stimulation of subthalamic nucleus? Results of a questionnaire. Parkinsonism & related disorders 2007;13:528-31. doi:10.1016/j.parkreldis.2006.12.013

Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. Advances in experimental medicine and biology 2007;595:1-75. doi:10.1007/978-0-387-46401-5_1

Srimal RC, Dhawan BN. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. The Journal of pharmacy and pharmacology 1973;25:447-52.

Masuda T, Hidaka K, Shinohara A, Maekawa T, Takeda Y, Yamaguchi H. Chemical studies on antioxidant mechanism of curcuminoid: analysis of radical reaction products from curcumin. J Agric Food Chem 1999;47:71-7.

Sui Z, Salto R, Li J, Craik C, Ortiz de Montellano PR. Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes. Bioorg Med Chem 1993;1:415-22.

Kim JH, Nam SW, Kim BW, Kim WJ, Choi YH. Astaxanthin improves the proliferative capacity as well as the osteogenic and adipogenic differentiation potential in neural stem cells. Food Chem Toxicol 2010;48:1741-5. doi:10.1016/j.fct.2010.04.002

Wang XS, Zhang ZR, Zhang MM, Sun MX, Wang WW, Xie CL. Neuroprotective properties of curcumin in toxin-base animal models of Parkinson’s disease: a systematic experiment literatures review. BMC complementary and alternative medicine 2017;17:412. doi:10.1186/s12906-017-1922-x

Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease. Free radical research 2005;39:1119-25. doi:10.1080/10715760500233113

Wang J, Du XX, Jiang H, Xie JX. Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappa B modulation in MES23.5 cells. Biochemical pharmacology 2009;78:178-83. doi:10.1016/j.bcp.2009.03.031

Rajeswari A, Sabesan M. Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson's disease induced by MPTP neurodegeneration in mice. Inflammopharmacology 2008;16:96-9. doi:10.1007/s10787-007-1614-0

Jaisin Y, Thampithak A, Meesarapee B, Ratanachamnong P, Suksamrarn A, Phivthong-Ngam L, et al. Curcumin I protects the dopaminergic cell line SH-SY5Y from 6-hydroxydopamine-induced neurotoxicity through attenuation of p53-mediated apoptosis. Neuroscience letters 2011;489:192-6. doi:10.1016/j.neulet.2010.12.014

Meesarapee B, Thampithak A, Jaisin Y, Sanvarinda P, Suksamrarn A, Tuchinda P, et al. Curcumin I mediates neuroprotective effect through attenuation of quinoprotein formation, p-p38 MAPK expression, and caspase-3 activation in 6-hydroxydopamine treated SH-SY5Y cells. Phytotherapy research: PTR 2014;28:611-6. doi:10.1002/ptr.5036

Song JX, Shaw PC, Wong NS, Sze CW, Yao XS, Tang CW, et al. Chrysotoxine, a novel bibenzyl compound selectively antagonizes MPP(+), but not rotenone, neurotoxicity in dopaminergic SH-SY5Y cells. Neuroscience letters 2012;521:76-81. doi:10.1016/j.neulet.2012.05.063

Cheung YT, Lau WK, Yu MS, Lai CS, Yeung SC, So KF, et al. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 2009;30:127-35. doi:10.1016/j.neuro.2008.11.001

Schule B, Pera RA, Langston JW. Can cellular models revolutionize drug discovery in Parkinson's disease? Biochimica et biophysica acta 2009;1792:1043-51. doi:10.1016/j.bbadis.2009.08.014

Forno LS. Neuropathology of Parkinson's disease. Journal of neuropathology and experimental neurology 1996;55:259-72. doi:10.1016/j.parkreldis.2017.07.033

Xing C, Peng Y, Chang R, Yin Y, Xie Z. Effects of insulin-like growth factor-1 on okadaic acid-induced apoptosis in SH-SY5Y cells. Cell biology international 2005;29:803-8. doi:10.1016/j.cellbi.2005.04.012

Ljungdahl A, Hokfelt T, Jonsson G, Sachs C. Autoradiographic demonstration of uptake and accumulation of 3H-6-hydroxydopamine in adrenergic nerves. Experientia 1971;27:297-9.

Hwang O. Role of oxidative stress in Parkinson's disease. Experimental neurobiology 2013;22:11-7. doi:10.5607/en.2013.22.1.11

Khopde SM, Priyadarsini KI, Guha SN, Satav JG, Venkatesan P, Rao MN. Inhibition of radiation-induced lipid peroxidation by tetrahydrocurcumin: possible mechanisms by pulse radiolysis. Biosci Biotechnol Biochem 2000;64:503-9.

Jaroonwitchawan T, Chaicharoenaudomrung N, Namkaew J, Noisa P. Curcumin attenuates paraquat-induced cell death in human neuroblastoma cells through modulating oxidative stress and autophagy. Neuroscience letters 2017;636:40-7. doi:10.1016/j.neulet.2016.10.050

Ganguli M, Chandra V, Kamboh MI, Johnston JM, Dodge HH, Thelma BK, et al. Apolipoprotein E polymorphism and Alzheimer disease: The Indo-US Cross-National Dementia Study. Arch Neurol 2000;57:824-30.

Khatri DK, Juvekar AR. Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson's disease. Pharmacology, biochemistry, and behavior 2016;150-151:39-47. doi:10.1016/j.pbb.2016.09.002

Song S, Nie Q, Li Z, Du G. Curcumin improves neurofunctions of 6-OHDA-induced parkinsonian rats. Pathology, research and practice 2016;212:247-51. doi:10.1016/j.prp.2015.11.012

Chu CT, Levinthal DJ, Kulich SM, Chalovich EM, DeFranco DB. Oxidative neuronal injury. The dark side of ERK1/2. European journal of biochemistry / FEBS 2004;271:2060-6. doi:10.1111/j.1432-1033.2004.04132.x

Bogoyevitch MA, Court NW. Counting on mitogen-activated protein kinases--ERKs 3, 4, 5, 6, 7 and 8. Cellular signalling 2004;16:1345-54. doi:10.1016/j.cellsig.2004.05.004

Roskoski R. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacological research: the official journal of the Italian Pharmacological Society 2012;66:105-43. doi:10.1016/j.phrs.2012.04.005

Subramaniam S, Unsicker K. ERK and cell death: ERK1/2 in neuronal death. FEBS J 2010;277:22-9. doi:10.1111/j.1742-4658.2009.07367.x

Ren Y, Jiang H, Yang F, Nakaso K, Feng J. Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation. The Journal of biological chemistry 2009;284:4009-17. doi:10.1074/jbc.M806245200

Zhuang S, Schnellmann RG. A death-promoting role for extracellular signal-regulated kinase. The Journal of pharmacology and experimental therapeutics 2006;319:991-7. doi:10.1124/jpet.106.107367

Zhu JH, Kulich SM, Oury TD, Chu CT. Cytoplasmic aggregates of phosphorylated extracellular signal-regulated protein kinases in Lewy body diseases. The American journal of pathology 2002;161:2087-98. doi:10.1016/s0002-9440(10)64487-2

Numakawa T, Matsumoto T, Numakawa Y, Richards M, Yamawaki S, Kunugi H. Protective Action of Neurotrophic Factors and Estrogen against Oxidative Stress-Mediated Neurodegeneration. Journal of toxicology 2011;2011:405194. doi:10.1155/2011/405194

Stanciu M, Wang Y, Kentor R, Burke N, Watkins S, Kress G, et al. Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 2000;275:12200-6.

Ramachandiran S, Huang Q, Dong J, Lau SS, Monks TJ. Mitogen-activated protein kinases contribute to reactive oxygen species-induced cell death in renal proximal tubule epithelial cells. Chem Res Toxicol 2002;15:1635-42.

Wang X, Martindale JL, Holbrook NJ. Requirement for ERK activation in cisplatin-induced apoptosis. The Journal of biological chemistry 2000;275:39435-43. doi:10.1074/jbc.M004583200

Zhuang S, Yan Y, Daubert RA, Han J, Schnellmann RG. ERK promotes hydrogen peroxide-induced apoptosis through caspase-3 activation and inhibition of Akt in renal epithelial cells. American journal of physiology Renal physiology 2007;292:F440-7. doi:10.1152/ajprenal.00170.2006

دانلود

چاپ شده

2018-11-19

شماره

نوع مقاله

مقاله پژوهشي

مقالات بیشتر خوانده شده از همین نویسنده

<< < 2 3 4 5 6 7 8 9 10 11 > >>