Studding the effect of immobilization of Zinc dioxide nanoparticles based on diatomite adsorbent on the xylene adsorption capacity

Authors

  • Zahra Rahmani 1 1- M.Sc. Student, Department of Occupational Health Engineering, school of medical science, Tarbiat Modares University, Tehran, Iran.
  • Hasan Asiliyan Mahabadi 2* 2- Associate Professor, Department of Occupational Health Engineering, school of medical science, Tarbiat Modares University, Tehran, Iran. orcid http://orcid.org/0000-0002-1792-2488
  • Ali Khavnin 3 3- Associate Professor, Department of Occupational Health Engineering, school of medical science, Tarbiat Modares University, Tehran, Iran.

DOI:

https://doi.org/10.22100/jkh.v13i4.2143

Keywords:

volatile organic compounds, diatomite adsorbent, xylene capacity, zinc oxide nanoparticles

Abstract

Introduction: Rapid growth of industries-has led to increase in occupational exposures to volatile organic compounds, so because of having adverse effects on humans, controlling of these compounds are essential. The aim of study was to compare the xylene adsorption capacity in two types of diatomite adsorbent with and without zinc oxide nanoparticles …..

 

Methods: After chemical and thermal modifying the diatomite by 1 M hydrochloric acid, absorption experiments were performed on two types of diatomite with nanoparticles zinc dioxide and without nanoparticles. Adsorption isotherms were investigated to evaluate the xylene adsorption capacity and to match them with the IUPAC model. Data analysis was performed by phocheck tiger device

Results: By the BET analysis, it was found that diatomite with nanoparticle had less Special surface area than diatomite without it. SEM and EDX analysis indicate that ZnO particles are immobilized on the adsorbent. Xylene absorption capacity after modifying with nanoparticles increased from 1.64 to 2.6 mg / g, and breakthrough time after modification with nanoparticles decreased from 18 to 14 minutes.

 

Conclusion: The modification of diatomite with ZnO nanoparticles increases the absorbance capacity and it can be used as an appropriate catalyst for the removal of volatile organic pollutants.

References

Kim SB, Hwang HT, Hong SC. Photocatalytic degradation of volatile organic compounds at the gas–solid interface of a TiO2 photocatalyst. Chemosphere 2002;48:437-44. doi:10.1016/S0045-6535(02)00101-7

Yu J, Wang S, Low J, Xiao W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys 2013;15:16883-90. doi:10.1039/c3cp53131g

Deng XQ, Liu JL, Li X, Zhu B, Zhu X, Zhu AM. Kinetic study on visible-light photocatalytic removal of formaldehyde from air over plasmonic Au/TiO2. Catal Today 2016;281:630-5. doi:10.1016/j.cattod.2016.05.014

Baltrėnas P, Baltrėnaitė E, Šerevičienė V, Pereira P. Atmospheric BTEX concentrations in the vicinity of the crude oil refinery of the Baltic region. Environ Monit Assess 2011;182:115-27. doi:10.1007/s10661-010-1862-0

Suib SL. New and future developments in catalysis: Catalysis for remediation and environmental concerns. Elsevier, Amsterdam, The Netherlands, 2013.

Kim SC. The catalytic oxidation of aromatic hydrocarbons over supported metal oxide, J Hazard Mater 2002;91:285-99. doi:10.1016/S0304-3894(01)00396-X

Original list of hazardous air pollutants. Environmental Protection Agency. 2012: P.1-12

Agency For Toxic Substance and Disease Registry. Public Health Statement: Xylene [online] 1996.Available / www.atsdr.cdc.gov/toxprofiles/tp 71-cl-b.pdf.

Hofstetter TB, Spain JC, Nishino SF, Bolotin J, Schwarzenbach RP. Identifying competing aerobic nitrobenzene biodegradation pathways by compound-specific isotope analysis. Environ Sci Technol 2008;42:4764-70

Arena F, Negro J, Parmaliana A, Spadaro L, Trunfio G. Improved MnCeO x systems for the catalytic wet oxidation (CWO) of phenol in wastewater streams. Industrial & Engineering Chemistry Research 2007;46:6724-31. doi:10.1021/ie0701118

Khalighi Sheshdeh R, Khosravi Nikou MR, Badii K, Mohammadzadeh S. Evaluation of adsorption kinetics and equilibrium for the removal of benzene by modified diatomite. Chemical engineering & technology 2013;36:1713-20. doi:10.1002/ceat.201300041

Ridha A, Aderdour H, Zineddine H, Benabdallah MZ, El Morabit M, Nadiri A. Aqueous silver (i) adsorption on a low density moroccan silicate Etude de l'adsorption de l'argent (i) en solution aqueuse sur un silicate naturel marocain de faible densité. Annales de Chimie Science des Matériaux 1998;23:161-4. doi:10.1016/S0151-9107(98)80046-9

Agdi K, Bouaid A, Esteban AM, Hernando PF, Azmani A, Camara C. Removal of atrazine and four organophosphorus pesticides from environmental waters by diatomaceous earth-remediation method. J Environ Monit 2000;2:420-3

Yu-xiang Y, Chen R, Dai A. A study on structure of local diatomites. Acta Chimica Sinica-Chinese Edition 1996;54:57-64

Jia Y, Han W, Xiong G, Yang W. Diatomite as high performance and environmental friendly catalysts for phenol hydroxylation with H2O2. Science and Technology of Advanced Materials 2007;8:106-9. doi:10.1016/j.stam.2006.10.003

Yuan P, Wu D, He H, Lin Z. The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study. Applied Surface Science 2004;227:30-9. doi:10.1016/j.apsusc.2003.10.031

Deng L, Yuan P, Liu D, Annabi-Bergaya F, Zhou J, Chen F, et al. Effects of microstructure of clay minerals, montmorillonite, kaolinite and halloysite, on their benzene adsorption behaviors. Applied Clay Science 2017;143:184-91. doi:10.1016/j.clay.2017.03.035

Ryu CY, Yeo SD. Vapor phase adsorption of trichloroethane using organically modified montmorillonite. Journal of Industrial and Engineering Chemistry 2010;16:441-7. doi:10.1016/j.jiec.2010.01.043

Aivalioti M, Vamvasakis I, Gidarakos E. BTEX and MTBE adsorption onto raw and thermally modified diatomite. Journal of Hazardous Materials 2010;178:136-43. doi:10.1016/j.jhazmat.2010.01.053

Huttenloch P, Roehl KE, Czurda K. Sorption of nonpolar aromatic contaminants by chlorosilane surface modified natural minerals. Environmental science & technology 2001;35:4260-4. doi:10.1021/es010131f

Huttenloch P, Roehl KE, Czurda K. Sorption of nonpolar aromatic contaminants by chlorosilane surface modified natural minerals, Environ. Sci. Technol 2001;35:4260-4. doi:10.1021/es010131f

NIOSH NIfOSaH. Method1501. 2005 (3).

Dehestaniathar S, Khajelakzay M, Ramezani-Farani M, Ijadpanah-Saravi H. Modified diatomite-supported CuO–TiO2 composite: Preparation, characterization and catalytic CO oxidation. Journal of the Taiwan Institute of Chemical Engineers 2016;58:252-58. doi:10.1016/j.jtice.2015.05.030

Moussavi G, Rashidi R, Khavanin A. The efficacy of GAC/MgO composite for destructive adsorption of benzene from waste air stream. Chemical Engineering Journal 2013;228:741-7. doi:10.1016/j.cej.2013.05.032

Saqer SM, Kondarides DI, Verykios XE. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3. Applied Catalysis B: Environmental 2011;103:275-86. doi:10.1016/j.apcatb.2011.01.001

Aivalioti M, Papoulias P, Kousaiti A, Gidarakos E. Adsorption of BTEX, MTBE and TAME on natural and modified diatomite. Journal of hazardous materials 2012;207-208:117-27. doi:10.1016/j.jhazmat.2011.03.040

Azimi Pirsaraei SR, Asilian MH, Jonidi JA, Farahmandkia Z, Taran J. The effect of acid and thermal treatment on a natural diatomite. Chemistry Journal 2015;1:144-50. [Persian].

Li W, Du D, Yan T, Kong D, You J, Li D. Relationship between surface hydroxyl groups and liquid-phase photocatalytic activity of titanium dioxide. Journal of colloid and interface science 2015;444:42-8. doi:10.1016/j.jcis.2014.12.052

Wang J, Liu X, Li R, Qiao P, Xiao L, Fan J. TiO2 nanoparticles with increased surface hydroxyl groups and their improved photocatalytic activity. Catalysis Communications 2012;19:96-9. doi:10.1016/j.catcom.2011.12.028

Kim JH, Lee HI. Effect of surface hydroxyl groups of pure TiO 2 and modified TiO 2 on the photocatalytic oxidation of aqueous cyanide. Korean Journal of Chemical Engineering 2004;21:116-22. doi:10.1007/BF02705388

Zhang G, Liu Y, Zheng S, Hashisho Z. Adsorption of volatile organic compounds onto natural porous minerals. Journal of hazardous materials 2019;364:317-24. doi:10.1016/j.jhazmat.2018.10.031

Khraisheh MA, Al-degs YS, Mcminn WA. Remediation of wastewater containing heavy metals using raw and modified diatomite. Chemical Engineering Journal 2004;99:177-84. doi:10.1016/j.cej.2003.11.029

Al-Degs Y, Khraisheh MA, Tutunji MF. Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Res 2001;35:3724-8

Zhang G, Sun Z, Duan Y, Ma R, Zheng S. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde. Applied Surface Science 2017;412:105-12. doi:10.1016/j.apsusc.2017.03.198

Published

2019-03-11

Issue

Section

Original Article(s)

How to Cite

Studding the effect of immobilization of Zinc dioxide nanoparticles based on diatomite adsorbent on the xylene adsorption capacity. (2019). Knowledge and Health in Basic Medical Sciences, 13(4), 47-55. https://doi.org/10.22100/jkh.v13i4.2143

Most read articles by the same author(s)

<< < 62 63 64 65 66 67