افزایش اثر ضد قارچی نانو ذرات سلنیوم بیوسنتز شده با استفاده از آسپرژیلوس فومیگاتوس
DOI::
https://doi.org/10.22100/jkh.v17i3.3077چکیده
مقدمه: سنتزهای سبز (زیستی) بهعنوان روش های جدید سنتز نانو ذرات با رویکردی ساده، زیست سازگار، بی خطر و اقتصادی میتوانند جایگزین روشهای شیمیایی و فیزیکی باشند. قارچها قادر به تبدیل برخی یونهای سمی به اشکال کمتر سمی، از جمله نانو ذرات هستند. نانو ذرات با اندازه 1 تا 100 نانومتر دارای خواص کوانتومی منحصر به فرد میباشند. امروزه معضلات مقاومتهای دارویی در گونههای مختلفی از قارچها دیده میشود. نانو ذرات سلنیوم (SeNPs) از موادی هستند که خاصیت ضد قارچی آنها گزارش شده است. هدف از مطالعه حاضر بررسی اثر ضد قارچی نانو ذرات سلنیوم بیوسنتز شده با استفاده از آسپرژیلوس فومیگاتوس بود.
مواد و روشها: به این منظور SeNPs به کمک قارچ آسپرژیلوس فومیگاتوس با غلظت مشخص بیوسنتز شدند. حضور نانو ذرات با روشهای مختلف از جمله UV-Vis، FT-IR، FE-SEM، EDX، XRD، DLS و Zeta potential اثبات شد. سپس تعیین حساسیت بر اساس حداقل غلظت بازدارندگی رشد به کمک تست Minimum Inhibitory Concentration (MIC)، بر روی سویههای استاندارد قارچی تیمار شده با SeNPs انجام شد.
نتایج: پس از تأیید نتایج حاصل از بیوسنتز نانو ذرات، MIC برای ایتراکونازول و آمفوتریسین B علیه سویههای استاندارد قارچی مورد مطالعه بهترتیب، 8 و 4 میکروگرم در میلیلیتر بود. در حالی که مقادیر MIC برای نمونههای تیمار شده با SeNPs به 1 میکروگرم در میلیلیتر و کمتر از آن کاهش یافت.
نتیجهگیری: با توجه به ایجاد روند صعودی مقاومت قارچهای فرصتطلب نسبت به داروهای ضد قارچی هدف، به کارگیری نانو ذرات سلنیوم زیستی حتی در غلظتهای پایین نیز میتواند اثرات بازدارندگی مطلوبی بر روی رشد عوامل بیماریزای قارچی داشته باشد.
مراجع
Kalishwaralal K, Jeyabharathi S, Sundar K, Selvamani S, Prasanna M, Muthukumaran A. A novel biocompatible chitosan–Selenium nanoparticles (SeNPs) film with electrical conductivity for cardiac tissue engineering application. Materials Science and Engineering: C. 2018;92:151-60. doi: 10.1016/j.msec.2018.06.036
Pourakbar L, Moghaddam SS, Popović-Djordjević J. Synthesis of metal/metal oxide nanoparticles by green methods and their applications. Sustainable Agriculture Reviews 41: Springer; 2020. p. 63-81. doi: 10.1007/s12210-021-01021-0
Hosseini Bafghi M, Safdari H, Nazari R, Darroudi M, Sabouri Z, Zargar M, et al. Evaluation and comparison of the effects of biosynthesized selenium and silver nanoparticles using plant extracts with antifungal drugs on the growth of Aspergillus and Candida species. Rendiconti Lincei Rend Lincei Sci Fis Nat 2021;32:791-803. doi: 10.1007/s12210-021-01021-0
Radhakrishnan R, Mani U, Gnanamani A, Shanmugavel M. Myco-Fabricated Gold Nanoparticles from Aspergillus tamarii MTCC5152, its Characterization and Dye Biodegradation. Applied Microbiology: Theory & Technology 2021:52-62. doi: 10.37256/amtt.222021792
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 2019;12:908-31. doi: 10.1016/j.arabjc.2017.05.011
Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q, et al. Nano-selenium and its nanomedicine applications: a critical review. International Journal of Nanomedicine 2018;13:2107. doi: 10.2147/IJN.S157541
Sood A, Salih S, Roh D, Lacharme-Lora L, Parry M, Hardiman B, et al. Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nature Nanotechnology 2011;6:824-33. doi: 10.1002/jat.3654
Flores‐López LZ, Espinoza‐Gómez H, Somanathan R. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. Journal of Applied Toxicology 2019;39:16-26.
Mittal AK, Kumar S, Banerjee UC. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. Journal of Colloid and Interface Science 2014;431:194-9. doi: 10.1016/j.jcis.2014.06.030
Xu C, Qiao L, Ma L, Guo Y, Dou X, Yan S, et al. Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate intestinal epithelial barrier dysfunction caused by oxidative stress via Nrf2 signaling-mediated mitochondrial pathway. International Journal of Nanomedicine 2019;14:4491. doi: 10.2147/IJN.S199193
Shankar J, Tiwari S, Shishodia SK, Gangwar M, Hoda S, Thakur R, et al. Molecular insights into development and virulence determinants of Aspergilli: A proteomic perspective. Frontiers in Cellular and Infection Microbiology 2018;8:180. doi: 10.3389/fcimb.2018.00180
Richardson M, Rautemaa-Richardson R. Exposure to Aspergillus in home and healthcare facilities’ water environments: Focus on biofilms. Microorganisms 2019;7:7. doi: 10.3390/microorganisms7010007
Seyedmousavi S, Guillot J, Arné P, De Hoog GS, Mouton JW, Melchers WJ, et al. Aspergillus and aspergilloses in wild and domestic animals: a global health concern with parallels to human disease. Medical Mycology 2015;53:765-97. doi: 10.1093/mmy/myv067
Pantidos N, Horsfall LE. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanomedicine & Nanotechnology 2014;5:1. doi: 10.4172/2157-7439.1000233
Drott MT, Rush TA, Satterlee TR, Giannone RJ, Abraham PE, Greco C, et al. Microevolution in the pansecondary metabolome of Aspergillus flavus and its potential macroevolutionary implications for filamentous fungi. Proceedings of the National Academy of Sciences 2021;118. doi: 10.1073/pnas.2021683118
Troiano D, Orsat V, Dumont M. Status of filamentous fungi in integrated biorefineries. Renewable and Sustainable Energy Reviews 2020;117:109472. doi: 10.1016/j.rser.2019.109472
Hosseini Bafghi M, Zarrinfar H, Darroudi M, Zargar M, Nazari R. Green synthesis of selenium nanoparticles and evaluate their effect on the expression of ERG3, ERG11 and FKS1 antifungal resistance genes in Candida albicans and Candida glabrata. Letters in Applied Microbiology 2022;74:809-19. doi: 10.1111/lam.13667
Soliman AM, Abdel-Latif W, Shehata IH, Fouda A, Abdo AM, Ahmed YM. Green approach to overcome the resistance pattern of Candida spp. using biosynthesized silver nanoparticles fabricated by Penicillium chrysogenum F9. Biological Trace Element Research 2021;199:800-11.
Kazemi M, Akbari A, Sabouri Z, Soleimanpour S, Zarrinfar H, Khatami M, et al. Green synthesis of colloidal selenium nanoparticles in starch solutions and investigation of their photocatalytic, antimicrobial, and cytotoxicity effects. Bioprocess and Biosystems Engineering 2021;44:1215-25.
Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis 2017;17:e383-92. doi: 10.1016/S1473-3099(17)30316-X
Abdelghany T, Al-Rajhi AM, Al Abboud MA, Alawlaqi M, Magdah AG, Helmy EA, et al. Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. BioNanoScience 2018;8:5-16.
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 2017;12:1227. doi: 10.2147%2FIJN.S121956
Feng QL, Wu J, Chen GQ, Cui F, Kim T, Kim J. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research 2000;52:662-8. doi: 10.1002/1097-4636(20001215)52:4%3C662::AIDJBM10%3E3.0.CO;2-3
Rafique M, Sadaf I, Rafique MS, Tahir MB. A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine, and Biotechnology 2017;45:1272-91. doi: 10.1080/21691401.2016.1241792
Rasouli M. Biosynthesis of selenium nanoparticles using yeast Nematospora coryli and examination of their anti-candida and anti-oxidant activities. IET Nanobiotechnol 2019;13:214-8. doi: 10.1049/iet-nbt.2018.5187
Delacôte C, Bonakdarpour A, Johnston CM, Zelenay P, Wieckowski A. Aqueous-based synthesis of ruthenium–selenium catalyst for oxygen reduction reaction. Faraday Discussions 2009;140:269-81. doi: 10.1039/B806377J
Jackson MI, Combs GF. Selenium as a cancer preventive agent. Selenium: Springer; 2011. p.313-23. doi: 10.1007/978-1-4614-1025-6_24
Rayman MP. Selenium and human health. The Lancet 2012;379:1256-68. doi: 10.1016/S0140-6736(11)61452-9
Ziyaei N. Study the toxicological effect of nanosilver particle on biological and ecological systems. Agricultural Biotechnology Journal 2014;6:121-48.
Kousha M, Tadi R, Soubani A. Pulmonary aspergillosis: a clinical review. European Respiratory Review 2011;20:156-74. doi: 10.1183/09059180.00001011
Amini F, Mirhendi H, Kachuei R, Noorbakhsh F. Detection and Identification of Aspergillus fumigatus in BAL Samples of Patients with Suspected Tuberculosis by Nested-PCR. Iranian Journal of Medical Microbiology 2014;8:14-21.
Jenkins DR. Nosocomial infections and infection control. Medicine 2017;45:629-33. doi: 10.1016/j.mpmed.2017.07.005
Diba K, Makhdoomi K, Rahimirad M, Jabari D. Survey of opportunistic fungi in the clinical and environmental specimens obtained from Urmia educational hospitals. Journal of North Khorasan University of Medical Sciences 2014;6:51-8.
Lakhani P, Patil A, Majumdar S. Challenges in the polyene-and azole-based pharmacotherapy of ocular fungal infections. Journal of Ocular Pharmacology and Therapeutics 2019;35:6-22. doi: 10.1089/jop.2018.0089
Martínez-Esquivias F, Guzmán-Flores JM, Pérez-Larios A, González Silva N, Becerra-Ruiz JS. A Review of the Antimicrobial Activity of Selenium Nanoparticles. Journal of Nanoscience and Nanotechnology 2021;21:5383-98. doi: 10.1166/jnn.2021.19471
Bafghi MH, Darroudi M, Zargar M, Zarrinfar H, Nazari R. Biosynthesis of selenium nanoparticles by Aspergillus flavus and Candida albicans for antifungal applications. Micro & Nano Letters 2021. doi: 10.1049/mna2.12096
Nayak V, Singh KR, Singh AK, Singh RP. Potentialities of selenium nanoparticles in biomedical science. New Journal of Chemistry 2021;45:2849-78. doi: 10.1039/D0NJ05884J
Srivastava N, Mukhopadhyay M. Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess and Biosystems Engineering 2015;38:1723-30.
Bafghi MH, Nazari R, Darroudi M, Zargar M, Zarrinfar H. The effect of biosynthesized selenium nanoparticles on the expression of CYP51A and HSP90 antifungal resistance genes in Aspergillus fumigatus and Aspergillus flavus. Biotechnol Prog 2021:e3206. doi: 10.1002/btpr.3206
Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. European Journal of Histochemistry: EJH 2018;62. doi: 10.4081/ejh.2018.2841
Koehler A, Corbellini VA, Heidrich D, Scroferneker ML. Prediction of itraconazole minimum inhibitory concentration for Fonsecaea pedrosoi using Fourier Transform Infrared Spectroscopy (FTIR) and chemometrics. Plos One 2020;15:e0243231.
Siopi M, Pournaras S, Meletiadis J. Comparative evaluation of Sensititre YeastOne and CLSI M38-A2 reference method for antifungal susceptibility testing of Aspergillus spp. against echinocandins. Journal of Clinical Microbiology 2017;55:1714-9. doi: 10.1128/jcm.00044-17
Zomorodian K, Pourshahid S, Sadatsharifi A, Mehryar P, Pakshir K, Rahimi MJ, et al. Biosynthesis and characterization of silver nanoparticles by Aspergillus species. BioMed Research International 2016;2016. doi: 10.1155/2016/5435397
Delgado-Beleño Y, Martinez-Nuñez C, Cortez-Valadez M, Flores-López N, Flores-Acosta M. Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications. Materials Research Bulletin 2018;99:385-92. doi: 10.1016/j.materresbull.2017.11.015
Srivastava N, Mukhopadhyay M. Biosynthesis and structural characterization of selenium nanoparticles using Gliocladium roseum. Journal of Cluster Science 2015;26:1473-82.
Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews 2013;65:1803-15. doi: 10.1016/j.addr.2013.07.011
Sindhwani S, Chan WC. Nanotechnology for modern medicine: next step towards clinical translation. Journal of Internal Medicine 2021. doi: 10.1111/joim.13254
Tamiyakul H, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Tanasupawat S, Warisnoicharoen W. Changes in protein patterns of Staphylococcus aureus and Escherichia coli by silver nanoparticles capped with poly (4-styrenesulfonic acid-co-maleic acid) polymer. Asian Biomed 2019;13:39-47. doi: 10.1515/abm-2019-0039
Cui D, Zhang H, Wang K, Gao F, Zhang X, Asahi T, et al. Gold Nanoparticles Enhance Efficiency of In Vitro Gene Transcription-Translation System. Nano Biomedicine & Engineering 2011;3. doi: 10.5101/nbe.v3i2.p120-125
Firooz A, Daneshpazhooh M, Lotfali E, Sharzad Kavkani M, Ghasemi Z, Khamesipoor A, et al. Drug Sensitivity Profile of Fungi Isolated from Onychomycosis Patients and Evaluation of Squalene Epoxidase Mutation in One Terbinafine-Resistant Trichophyton mentagrophytes Species. Microbial Drug Resistance 2021. doi: 10.1089/mdr.2020.0572
Liu Q, Duo Y, Fu J, Qiu M, Sun Z, Adah D, et al. Nano-immunotherapy: Unique mechanisms of nanomaterials in synergizing cancer immunotherapy. Nano Today 2021;36:101023. doi: 10.1016/j.nantod.2020.101023
Menezes V, Malek A, A Keelan J. Nanoparticulate drug delivery in pregnancy: placental passage and fetal exposure. Current Pharmaceutical Biotechnology 2011;12:731-42.
Vemuri SK, Banala RR, Mukherjee S, Uppula P, Subbaiah G, AV GR, et al. Novel biosynthesized gold nanoparticles as anti-cancer agents against breast cancer: Synthesis, biological evaluation, molecular modelling studies. Materials Science and Engineering: C. 2019;99:417-29. doi: 10.1016/j.msec.2019.01.123
Dawar S, Singh N, Kanwar RK, Kennedy RL, Veedu RN, Zhou S-F, et al. Multifunctional and multitargeted nanoparticles for drug delivery to overcome barriers of drug resistance in human cancers. Drug Discovery Today 2013;18:1292-300. doi: 10.1016/j.drudis.2013.09.009
Zou J, Zhu B, Li Y. Functionalization of silver nanoparticles loaded with paclitaxel-induced A549 cells apoptosis through ROS-mediated signaling pathways. Current Topics in Medicinal Chemistry 2020;20:89-98. doi: 10.2174/1568026619666191019102219
Varunkumar K, Anusha C, Saranya T, Ramalingam V, Raja S, Ravikumar V. Avicennia marina engineered nanoparticles induce apoptosis in adenocarcinoma lung cancer cell line through p53 mediated signaling pathways. Process Biochemistry 2020;94:349-58. doi: 10.1016/j.procbio.2020.04.034
Yallapu MM, Khan S, Maher DM, Ebeling MC, Sundram V, Chauhan N, et al. Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials 2014;35:8635-48. doi: 10.1016/j.biomaterials.2014.06.040
Cittrarasu V, Kaliannan D, Dharman K, Maluventhen V, Easwaran M, Liu WC, et al. Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Scientific Reports 2021;11:1-15.
Zhang H, Zhou H, Bai J, Li Y, Yang J, Ma Q, et al. Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019;571:9-16. doi: 10.1016/j.colsurfa.2019.02.070
Mosallam FM, El-Sayyad GS, Fathy RM, El-Batal AI. Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microbial Pathogenesis 2018;122:108-16. doi: 10.1016/j.micpath.2018.06.013
Mahmoudi S, Vahidi M, Malekabad ES, Izadi A, Khatami M, Dadashi A. In vitro antifungal activity of green synthesized silver nanoparticles in comparison to conventional antifungal drugs against Trichophyton interdigitale, Trichophyton rubrum and Epidermophyton floccosum. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders). 2021;21:370-4. doi: https://doi.org/10.2174/1871526520666200715095744
Naghsh N, Doudi M, Safaeinejad Z. The Antifungal Activity of Silver Nanoparticles and Fluconazole on AspergillusFumigatus. Medical Laboratory Journal 2013;7:7-12.
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science 2004;275:177-82. doi: https://doi.org/10.1016/j.jcis.2004.02.012
Lotfali E, Shahverdi AR, Mohammadi R, Noorbakhsh F, Ghajari A, Ansari S, et al. In Vitro Activity of Two Nanoparticles on Clinical Isolates of Candida parapsilosis, Showing Resistance Against Antifungal Agents in Children. Arch Clin Infect Dis 2017;12. doi: %2010.5812/archcid.13853
Vahdati M, Moghadam TT. Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Scientific Reports 2020;10:1-10.
Lee N-Y, Ko W-C, Hsueh P-R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Frontiers in Pharmacology 2019;10:1153. doi: 10.3389/fphar.2019.01153
Yakhchi V, Jahanizadeh S, Yazdian F, Rashedi H, Haghiralsadat BF. Synthesis and Evaluation of Lipid-based Nanoparticle Containing Ginger Extract against Aspergillus Species. Journal of Shahid Sadoughi University of Medical Sciences. 2020. doi: 10.18502/ssu.v28i6.4155
Zhang L, Pornpattananangkul D, Hu C-M, Huang C-M. Development of nanoparticles for antimicrobial drug delivery. Current Medicinal Chemistry 2010;17:585-94. doi: 10.2174/092986710790416290
Lara HH, Guisbiers G, Mendoza J, Mimun LC, Vincent BA, Lopez-Ribot JL, et al. Synergistic antifungal effect of chitosan-stabilized selenium nanoparticles synthesized by pulsed laser ablation in liquids against Candida albicans biofilms. International Journal of Nanomedicine 2018;13:2697. doi: 10.2147%2FIJN.S151285
چاپ شده
شماره
نوع مقاله
مجوز
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.