Modeling of Treatment of Dairy Wastewaters by Electrocoagulation Process Using Adaptive Neuro-Fuzzy Inference System
DOI:
https://doi.org/10.22100/jkh.v11i3.1398Keywords:
Dairy wastewater, Adaptive neuro fuzzy inference system, Electrocoagulation.Abstract
Introduction: Forecasting of the wastewater quality parameters has great importance in modern wastewater treatment methods. One of the main problems in predicting the efficacy of a wastewater treatment is the complexity of physicochemical properties of raw sewage and data differences for different reasons. Modeling of wastewater treatment using Adaptive Neural Fuzzy Inference System (ANFIS)- can help to improve wastewater quality control process. The aim of the study was to modeling of treatment of dairy wastewaters by electrocoagulation process using ANFIS.
Methods: In this study, ANFIS was used to estimate the chemical coagulation of dairy wastewater treatment. The input parameters to the ANFIS model were time, voltage, total suspended solids and boichemical oxygen demand and the output was chemical oxygen demand removal efficiency. Also the membership functions, the number of membership functions and number of learning cycles (Epochs) were used for optimization of different models by trial and error.
Results: The best model was assessed by bell-shaped membership functions with number of membership functions as 3 3 3 3 3 and 300 epochs of training with lowest mean square error(MES) and the best coefficient of determination (R2). The coefficient of determination and MSE of the best ANFIS model were 0.9912 and 0.012, respectively.
Conclusion: Analysis of the model revealed that the ANFIS is a powerful tool to predict the dairy wastewater treatment using electrical coagulation.
References
Borbón B, Oropeza-Guzman MT, Brillas E, Sirés I. Sequential electrochemical treatment of dairy wastewater using aluminum and DSA-type anodes. Environmental Science and Pollution Research 2014;21:8573-84. doi: 10.1007/s11356-014-2787-x
Bensadok K, Benammar S, Lapicque F, Nezzal G. Electrocoagulation of cutting oil emulsions using aluminium plate electrodes. Journal of Hazardous Materials 2008;152: 423-30. doi: 10.1016/j.jhazmat.2007.06.121
Daneshvar N, Oladegaragoze A, Djafarzadeh N. Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. Journal of Hazardous Materials 2006;129:116-22. doi: 10.1016/j.jhazmat.2005.08.033
Bazrafshan E, Moein H, Kord Mostafapour F, Nakhaie S. Application of electrocoagulation process for dairy wastewater treatment. Journal of Chemistry 2013;2013:1-8. doi: 10.1155/2013/640139
Bazrafshan E, Mostafapour FK, Farzadkia M, Ownagh KA, Mahvi AH. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process. PloS One 2012;7:e40108. doi: 10.1371/journal.pone.0040108
Curteanu S, Piuleac CG, Godini K, Azaryan G. Modeling of electrolysis process in wastewater treatment using different types of neural networks. Chemical Engineering Journal 2011;172: 267-76. doi: 10.1016/j.cej.2011.05.104
Gaya MS, Wahab NA, Sam YM, Samsudin SI. ANFIS modelling of carbon and nitrogen removal in domestic wastewater treatment plant. Jurnal Teknologi 2014;67:29-34. doi: 10.11113/jt.v67.2839
Hernández-Ramírez DA, Herrera-López EJ, editors. Artificial neural network modeling of slaughterhouse wastewater removal of COD and TSS by electrocoagulation. In: Advance Trends in Soft Computing. Springer International pub;2014.p.273-80; doi: 10.1007/978-3-319-03674-8_26
Kundu P, Debsarkar A, Mukherjee S. Artificial neural network modeling for biological removal of organic carbon and nitrogen from slaughterhouse wastewater in a sequencing batch reactor. Advances in Artificial Neural Systems 2013;2013:1-15. doi: 10.1155/2013/268064
Tay JH, Zhang X. A fast predicting neural fuzzy model for high-rate anaerobic wastewater treatment systems. Water Research 2000;34:2849-60. doi: 10.1016/S0043-1354(00)00057-9
Association APH. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC 1998, 1268.
Jang JSR, Sun CT, editors. Neuro-fuzzy and soft computing: A Computational approach to learning and machine intelligence. United States: Prentice Hall pub;1997. doi: 10.1109/TAC.1997.633847
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.