The Protective Effect of Usnic Acid on Impairment Learning and Memory , Antioxidant Capacity and Necrosis Cell Death on Hippocampus Following Methamphetamine Neurotoxicity

Authors

DOI:

https://doi.org/10.22100/jkh.v17i4.2652

Abstract

Introduction:  Nowadays, methamphetamine addiction among teenagers and young people has attracted great concern in Iran. Long-term use of methamphetamine damages the brain's dopaminergic, serotonergic, and metabolic systems. Moreover, due to the effects of neurotoxicity in the brain, the patient suffers from cognitive disorders such as memory and learning disorders, mood disorders, and anxiety. Usnic acid has various biological properties, including antioxidant and anti-inflammatory activities. Therefore, the purpose of this study was to investigate the protective effects of usnic acid against the neurotoxicity of methamphetamine.

Methods Methamphetamine neurotoxicity was induced by 40 mg/kg of METH in four intraperitoneally (IP) injections (e.g., 4×10 mg/kg q. 2-h, IP.). Usnic acid (25 mg/kg) was inserted at 30- min, 24-h, and 48 h after the final injection of METH. The Morris water maze test was used to study spatial memory. The brains were removed for biochemical assessments and Nissl staining.

Results: Behavioral tests show that usnic acid treatment could significantly improve spatial memory deficits and learning (P<0.05) versus the METH group. Usnic acid treatment significantly increased superoxide dismutase (P<0.01) and reduced malondialdehyde (P<0.05). Moreover, usnic acid significantly reduced necrosis cell death (P<0.05) in the CA1 area of the hippocampus.

Conclusion: According to the findings, usnic acid improves memory and learning function in rats by reducing cell death.

 

References

Yu S, Zhu L, Shen Q, Bai X, Di X. Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behav Neurol 2015;2015. doi: 10.1155/2015/103969

Gonçalves J, Martins T, Ferreira R, Milhazes N, Borges F, Ribeiro CF, et al. Methamphetamine‐Induced Early Increase of IL‐6 and TNF‐α mRNA Expression in the Mouse Brain. Ann N Y Acad Sci 2008;1139:103-11. doi:10.1196/annals.1432.043

Cadet JL, Krasnova IN, Jayanthi S, Lyles J. Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotox Res 2007;11:183-202.

Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM. Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther 2004;311:1-7. doi:10.1124/jpet.104.070961

Cubells JF, Rayport S, Rajendran G, Sulzer D. Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J Neurosci Res 1994;14:2260-71. doi: 10.1523/JNEUROSCI.14-04-02260.1994

Bowyer JF, Clausing P, Gough B, Slikker Jr W, Holson RR. Nitric oxide regulation of methamphetamine-induced dopamine release in caudate/putamen. Brain Res 1995;699:62-70. doi: 10.1016/0006-8993(95)00877-S

Davidson C, Gow AJ, Lee TH, Ellinwood EH. Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Rev 2001;36:1-22. doi: 10.1016/S0165-0173(01)00054-6

Seiden LS, Sabol KE. Methamphetamine and methylenedioxymethamphetamine neurotoxicity: possible mechanisms of cell destruction. Neuroto and Neuropath 1996;163:1276.

Escubedo E, Guitart L, Sureda FX, Jiménez A, Pubill D, Pallàs M, et al. Microgliosis and down-regulation of adenosine transporter induced by methamphetamine in rats. Brain Res 1998;814:120-6. doi: 10.1016/S0006-8993(98)01065-8

Guilarte T, Nihei M, McGlothan J, Howard A. Methamphetamine-induced deficits of brain monoaminergic neuronal markers: distal axotomy or neuronal plasticity. Neuroscience. 2003;122:499-513. doi: 10.1016/S0306-4522(03)00476-7

Pubill D, Canudas AM, Pallàs M, Camins A, Camarasa J, Escubedo E. Different glial response to methamphetamine-and methylenedioxymethamphetamine-induced neurotoxicity. Naunyn-Schmiedeb. Arch Pharmacol 2003;367:490-9. doi: 10.1007/s00210-003-0747

Zou JY, Crews FT. TNFα potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NFκB inhibition. Brain Res 2005;1034:11-24. doi: 10.1016/j.brainres.2004.11.014

Cocchietto M, Skert N, Nimis P, Sava G. A review on usnic acid, an interesting natural compound. Naturwissenschaften 2002;89:137-46. doi: 10.1007/s00114-002-0305-3

Luzina O, Salakhutdinov N. Biological activity of usnic acid and its derivatives: Part 1. Activity against unicellular organisms. Russ J Bioorganic Chem 2016;42:115-32. doi: 10.1134/S1068162016020084

Lai B, Upreti D. Ethnobotanical notes on three Indian lichens. The Lichenologist 1995;27:77-9.

Caviglia AM, Nicora P, Giordani P, Brunialti G, Modenesi P. Oxidative stress and usnic acid content in Parmelia caperata and Parmelia soredians (Lichenes). Il Farmaco 2001;56:379-82. doi: 10.1016/S0014-827X(01)01090-4

Luzina OA, Salakhutdinov NF. Usnic acid and its derivatives for pharmaceutical use: a patent review (2000–2017). Expert Opin Ther Pat 2018;28:477-91. doi: 10.1080/13543776.2018.1472239

Lee S, Lee Y, Ha S, Chung HY, Kim H, Hur J-S, et al. Anti-inflammatory effects of usnic acid in an MPTP-induced mouse model of Parkinson’s disease. Brain Res 2020;1730:146642. doi: 10.1016/j.brainres.2019.146642

Zare Mehrjerdi F, Shoshtari A, Mohseni F, Khastar H, Norozi P, Asadi Y, et al. Sulfur dioxide reduces hippocampal cells death and improves learning and memory deficits in rat model of transient global ischemia/reperfusion. Iran J Basic Med Sci 2018;21:998-1003. doi: 10.22038/IJBMS.2018.29404.7106

Kim B, Yun J, Park B. Methamphetamine-induced neuronal damage: neurotoxicity and neuroinflamation. Biomol Ther 2020;28:381. doi: 10.4062/biomolther.2020.044

Moszczynska A, Callan SP. Molecular, behavioral, and physiological consequences of methamphetamine neurotoxicity: implications for treatment. J Pharmacol Exp Ther 2017;362:474-88. doi: 10.1124/jpet.116.238501

Shafahi M, Vaezi G, Shajiee H, Sharafi S, Khaksari M. Crocin inhibits apoptosis and astrogliosis of hippocampus neurons against methamphetamine neurotoxicity via antioxidant and anti-inflammatory mechanisms. Neuroch Res 2018;43:2252-9. doi: 10.1007/s11064-018-2644-2

Fernández-Moriano C, Divakar PK, Crespo A, Gómez-Serranillos MP. Protective effects of lichen metabolites evernic and usnic acids against redox impairment-mediated cytotoxicity in central nervous system-like cells. Food Chem Toxicol 2017;105:262-77. doi: 10.1016/j.fct.2017.04.030

Su Z-Q, Mo Z-Z, Liao J-B, Feng X-X, Liang Y-Z, Zhang X, et al. Usnic acid protects LPS-induced acute lung injury in mice through attenuating inflammatory responses and oxidative stress. Int Immunopharmaco 2014;22:371-8. doi: 10.1016/j.intimp.2014.06.043

Downloads

Additional Files

Published

2023-01-08

Issue

Section

Original Article(s)

How to Cite

The Protective Effect of Usnic Acid on Impairment Learning and Memory , Antioxidant Capacity and Necrosis Cell Death on Hippocampus Following Methamphetamine Neurotoxicity. (2023). Knowledge and Health in Basic Medical Sciences, 17(4), Page:1-8. https://doi.org/10.22100/jkh.v17i4.2652