اثر بربرین هیدروکلراید بر اختلالات شناختی، یادگیری، حافظه و عملکرد حرکتی در موش های صحرایی با اعتیاد به متامفتامین

نویسندگان

  • Mahnaz Mesripour Alavijeh 1 1- دانشجوی دکترای تخصصی، گروه زیست شناسی، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران.
  • Gholamhassan Vaezi 2 2- استاد، گروه زیست شناسی، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران. orcid http://orcid.org/0000-0002-5258-826X
  • Mehdi Khaksari 3 3- دانشیار، گروه فیزیولوژی، دانشگاه علوم پزشکی شاهرود، شاهرود، ایران.
  • Vida Hojati 4 4- استادیار، گروه زیست شناسی، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران.

DOI::

https://doi.org/10.22100/jkh.v13i4.2139

کلمات کلیدی:

اعتیاد، مت آمفتامین، اختلالات شناختی-حرکتی، یادگیری و حافظه فضایی

چکیده

مقدمه: مت آمفتامين (METH) یک محرک قوی دستگاه عصبی مرکزی می­ باشد که عملکرد نوروترنسمیترهای خاصی در مغز را تقلید می­کند و باعث آزادسازی دوپامین و سروتونین و افزایش مقدار گلوتامات در مغز می­ شود. سوء مصرف آن باعث اختلالات حرکتی می­ شود و هيچ دارويي براي درمان وجود ندارد. این مطالعه با هدف بررسی تأثیر بربرین بر اختلالات شناختی- حرکتی ناشی از اعتیاد متامفتامین در موش صحرايي صورت گرفت.

مواد و روش‌ها: در اين مطالعه، 30 سر موش صحرايي نژاد ویستار انتخاب و به طور تصادفی به سه گروه مساوی تقسیم شدند که شامل: شاهد، دارای اعتیاد به مت آمفتامین، دارای اعتیاد به مت آمفتامین که در دوره سه هفته ای خروج، بربرین هیدروکلراید را (mg/kg/day100) دريافت کردند. دو گروه اعتیادی، مت آمفتامین را برای دو هفته تا دوز (mg/kg/day12)  دریافت کرده بودند. سپس در پایان سه هفته ترک با آزمون های رفتاری مازy  و ماز آبی موریس مورد ارزیابی قرار گرفتند.

نتایج: دو هفته اعتیاد به مت آمفتامین، اختلال عملکرد شناختی- حرکتی در موش ها ایجاد کرد و درمان سه هفته ای با بربرین هیدروکلراید سبب افزایش معنی داری در ماز y از جهت درصد ورود به بازوی ناشناخته و درصد تناوب حرکت نسبت به گروه فاقد درمان (05/0 p <) گردید. همچنین این گروه افزایش معنی داری در میزان تحرک و درصد زمان و فرکانس حرکت موش ها در محدوده سکو در روز پروب در ماز آبی موریس نسبت به گروه فاقد درمان نشان داد (05/0 p <).

نتیجه‌گیری: تجويز بربرین هيدروکلريد به مدت 3 هفته در دوره ترک، باعث بهبود اختلال عملکرد شناختی- حرکتی در معتادان متامفتامين می­شود.

مراجع

Rusyniak DE. Neurologic manifestations of chronic methamphetamine abuse. Psychiatr Clin North Am 2013;36:261-75. doi:10.1016/j.psc.2013.02.005

Won S, Hong RA, Shohet RV, Seto TB, Parikh NI. Methamphetamine‐associated cardiomyopathy. Clin Cardiol 2013;36:737-42. doi:10.1002/clc.22195

Allerton M, Blake W. The “Party Drug” crystal methamphetamine: risk factor for the acquisition of HIV. Perm J 2008;12:56-8.

Santos AP, Wilson AK, Hornung CA, Polk HC Jr, Rodriguez JL, Franklin GA. Methamphetamine laboratory explosions: a new and emerging burn injury. J Burn Care Rehabil 2005;26:228-32.

Alam-Mehrjerdi Z, Mokri A, Dolan K. Methamphetamine use and treatment in Iran: a systhematic review from the most populated Persian Gulf country. Asian J Psychiatr 2015;16:17-25. doi:10.1016/j.ajp.2015.05.036

Ciccarone D. Stimulant abuse: pharmacology, cocaine, methamphetamine, treatment, attempts at pharmacotherapy. Prim care 2011;38;41-58. doi:10.1016/j.pop.2010.11.004

Herman-Stahl MA, Krebs CP, Kroutil LA, Heller DC. Risk and protective factors for nonmedical use of prescription stimulants and methamphetamine among adolescents. J Adolesc Health 2006;39:374-80. doi:10.1016/j.jadohealth.2006.01.006

Kish S, Pharmacologic mechanisms of crystal meth. CMAJ 178 (2008) 1679-1682. [4] Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, Iwata Y, Tsuchiya KJ, Suda S, Suzuki K, Kawai M, Takebayashi K, Yamamoto S, Matsuzaki H, Ueki T, Mori N, Gold MS, Cadet JL, Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci 28 (2008) 5756- 5761.

Moszczynska A, Callan SP. Molecular, behavioral, and physiological consequences of methamphetamine neurotoxicity: implications for treatment. J Pharmacol Exp Ther 2017;362:474-88. doi:10.1124/jpet.116.238501

Murnane KS, Perrine SA, Finton BJ, Galloway MP, Howell LL, Fantegrossi WE. Effects of exposure to amphetamine derivatives on passive avoidance performance and the central levels of monoamines and their metabolites in mice: Correlations between behavior and neurochemistry. Psychopharmacology (Berl) 2012;220:495-508. doi:10.1007/s00213-011-2504-0

North A, Swant J, Salvatore MF, Gamble-George J, Prins P, Butler B, et al. Chronic methamphetamine exposure produces a delayed long-lasting memory deficit. Synapse 2013;67:245-57. doi:10.1002/syn.21635

Cubells JF, Rayport S, Rajendran G, Sulzer D. Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J Neurosci 1994;14:2260-71.

Kuhn D, Francescutti-Verbeem D, Thomas D. Dopamine quinones activate microglia and induce a neurotoxic gene expression profile: relationship to methamphetamine-induced nerve ending damage. Ann N Y Acad Sci 2006;1074:31-41. doi:10.1196/annals.1369.003

Tata DA, Yamamoto BK. Interactions between methamphetamine and environmental stress: role of oxidative stress, glutamate and mitochondrial dysfunction. Addiction 2007;102:49-60. doi:10.1111/j.1360-0443.2007.01770.x

Andres MA, Cooke IM, Bellinger FP, Berry MJ, Zaporteza MM, Rueli RH, et al. Methamphetamine acutely inhibits voltage-gated calcium channels but chronically up-regulates L-type channels. J Neurochem 2015;134:56-65. doi:10.1111/jnc.13104

Andres MA, Cooke IM, Bellinger FP, Berry MJ, Zaporteza MM, Rueli RH, et al. Methamphetamine acutely inhibits voltage-gated calcium channels but chronically up-regulates L-type channels. J Neurochem 2015;134:56-65. doi:10.1111/jnc.13104

Kaushal N, Matsumoto RR. Role of sigma receptors in methamphetamine-induced neurotoxicity. Curr Neuropharmacol 2011;9:54-7. doi:10.2174/157015911795016930

Hart CL, Marvin CB, Silver R, Smith EE. Is cognitive functioning impaired in methamphetamine users? a critical review. Neuropsychopharmacology 2012;37:586-608. doi:10.1038/npp.2011.276

Adriani W, Felici A, Sargolini F, Roullet P, Usiello A, Oliverio A, et al. N-methyl-D-aspartate and dopamine receptor involvement in the modulation of locomotor activity and memory processes. Exp Brain Res 1998;123:52-9.

Thanos PK, Kim R, Delis F, Rocco MJ, Cho J, Volkow ND. Effects of chronic methamphetamine on psychomotor and cognitive functions and dopamine signaling in the brain. Behav Brain Res 2017;320:282-90. doi:10.1016/j.bbr.2016.12.010

Simon SL, Domier C, Carnell J, Brethen P, Rawson R, Ling W. Cognitive impairment in individuals currently using methamphetamine. Am J Addict 2000;9:222-31.

Scott JC, Woods SP, Matt GE, Meyer RA, Heaton RK, Atkinson JH, et al. Neurocognitive effects of methamphetamine: a critical review and meta-analysis. Neuropsychol Rev 2007;17:275-97. doi:10.1007/s11065-007-9031-0

Murnane KS, Perrine SA, Finton BJ, Galloway MP, Howell LL, Fantegrossi WE. Effects of exposure to amphetamine derivatives on passive avoidance performance and the central levels of monoamines and their metabolites in mice: correlations between behavior and neurochemistry. Psychopharmacology 2012;220:495-508. doi:10.1007/s00213-011-2504-0

Roussotte FF, Bramen JE, Nunez SC, Quandt LC, Smith L, O’connor MJ, et al. Abnormal brain activation during working memory in children with prenatal exposure to drugs of abuse: the effects of methamphetamine, alcohol, and polydrug exposure. Neuroimage 2011;54:3067-75. doi:10.1016/j.neuroimage.2010.10.072

Henry BL, Minassian A, Perry W. Effect of methamphetamine dependence on everyday functional ability. Addict Behav 2010;35:593-8. doi:10.1016/j.addbeh.2010.01.013

Paulus MP, Hozack NE, Zauscher BE, Frank L, Brown GG, Braff DL, et al. Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology 2002;26:53-63. doi:10.1016/S0893-133X(01)00334-7

Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y, et al. Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci 2004;24:6028-36. doi:10.1523/JNEUROSCI.0713-04.2004

Recinto P, Samant AR, Chavez G, Kim A, Yuan CJ, Soleiman M, et al. Levels of neural progenitors in the hippocampus predict memory impairment and relapse to drug seeking as a function of excessive methamphetamine self-administration. Neuropsychopharmacology 2012;37:1275-87. doi:10.1038/npp.2011.315

Panenka WJ, Procyshyn RM, Lecomte T, MacEwan GW, Flynn SW, Honer WG, et al. Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend 2013;129:167-79. doi:10.1016/j.drugalcdep.2012.11.016

Cadet JL, Krasnova IN. Molecular bases of methamphetamine-induced neurodegeneration. Int Rev Neurobiol 2009;88:101-19. doi:10.1016/S0074-7742(09)88005-7

Wang SF, Yen JC, Yin PH, Chi CW, Lee HC. Involvement of oxidative stress-activated JNK signaling in the methamphetamine-induced cell death of human SH-SY5Y cells. Toxicology 2008;246:234-41. doi:10.1016/j.tox.2008.01.020

Cadet JL, Jayanthi S, Deng X. Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review. Neurotox Res 2005;8:199-206.

Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, et al. Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci 2008;28:5756-61. doi:10.1523/JNEUROSCI.1179-08.2008

Johnson-Davis KL, Fleckenstein AE, Wilkins DG. The role of hyperthermia and metabolism as mechanisms of tolerance to methamphetamine neurotoxicity. Eur J Pharmacol 2003;482:151-4.

Sharma HS, Kiyatkin EA. Rapid morphological brain abnormalities during acute methamphetamine intoxication in the rat: an experimental study using light and electron microscopy. J Chem Neuroanat 2009;37:18-32. doi:10.1016/j.jchemneu.2008.08.002

Thanos PK, Kim R, Delis F, Ananth M, Chachati G, Rocco MJ, et al. Chronic methamphetamine effects on brain structure and function in rats. PloS One 2016;11:e0155457. doi:10.1371/journal.pone.0155457

Martins T, Baptista S, Gonçalves J, Leal E, Milhazes N, Borges F, et al. Methamphetamine transiently increases the blood–brain barrier permeability in the hippocampus: role of tight junction proteins and matrix metalloproteinase-9. Brain Res 2011;1411:28-40. doi:10.1016/j.brainres.2011.07.013

Hsieh JH, Stein DJ, Howells FM. The neurobiology of methamphetamine induced psychosis. Front Hum Neurosci 2014;8:537. doi:10.3389/fnhum.2014.00537

Hadizade Asar S, Hosseini-Sharifabad M, Yadegari M. A stereological study on hippocampal subfields following administration of methamphetamine in male mice. IJML 2016;3:270-81.

Kulkarni SK, Dhir A. Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytother Res 2010;24:317-24. doi:10.1002/ptr.2968

Kulkarni SK, Dhir A. On the mechanism of antidepressant-like action of berberine chloride. Eur J Pharmacol 2008;589:163-72. doi:10.1016/j.ejphar.2008.05.043

Huang L, Shi A, He F, Li X. Synthesis, biological evaluation, and molecular modeling of berberine derivatives as potent acetylcholinesterase inhibitors. Bioorgan Med Chem 2010;18:1244-51. doi:10.1016/j.bmc.2009.12.035

Peng WH, Lo KL, Lee YH, Hung TH, Lin YC. Berberine produces antidepressant-like effects in the forced swim test and in the tail suspension test in mice. Life Sci 2007;81:933-8. doi:10.1016/j.lfs.2007.08.003

Bhutada P, Mundhada Y, Bansod K, Tawari S, Patil S, Dixit P, et al. Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes. Behav Brain Res 2011;220:30-41. doi:10.1016/j.bbr.2011.01.022

Sharma B, Salunke R, Balomajumder C, Daniel S, Roy P. Anti-diabetic potential of alkaloid rich fraction from Capparis decidua on diabetic mice. J Ethnopharmacol 2010;127:457-62. doi:10.1016/j.jep.2009.10.013

Wang HD, Lu DX, Qi RB. Therapeutic strategies targeting the LPS signaling and cytokines, Pathophysiology 2009;16:291-6. doi:10.1016/j.pathophys.2009.02.006

Bryant SG, Brown CS. Current concepts in clinical therapeutics: major affective disorders, Part 2. Clin Pharm 1986;5:385-95

Kuznetsova LP, Sochilina EE, Faddeeva MD, Iagodina OV. Effect of some isoquinoline alkaloids on enzymatic activity of acetylcholinesterase and monoamine oxidase. Ukr Biokhim Zh (1999) 2005;77:147-53.

Peng WH, Wu CR, Chen CS, Chen CF, Leu ZC, Hsieh MT. Anxiolytic effect of berberine on exploratory activity of the mouse in two experimental anxiety models: interaction with drugs acting at 5-HT receptors. Life Sci 2004;75:2451-62. doi:10.1016/j.lfs.2004.04.032

Xu D, Yang W, Zhou C, Liu Y, Xu B. Preventive effects of berberine on glucocorticoid-induced osteoporosis in rats. Planta Med 2010;76:1809-13. doi:10.1055/s-0030-1250040

Nakamura, J. [Metabolic factors in the pathogenesis of diabetic neuropathy]. Nihon Rinsho 2010;68:556-61.

Vincent AM, Callaghan BC, Smith AL, Feldman EL. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol 2011;7:573-83. doi:10.1038/nrneurol.2011.137

Ashby DM, Habib D, Dringenberg HC, Reynolds JN, Beninger RJ. Subchronic MK- 801 treatment and post-weaning social isolation in rats: differential effects on locomotor activity and hippocampal long-term potentiation. Behav Brain Res 2010;212:64-70. doi:10.1016/j.bbr.2010.03.041

Baydas G, Reiter RJ, Yasar A, Tuzcu M, Akdemir I, Nedzvetskii VS. Melatonin reduces glial reactivity in the hippocampus, cortex, and cerebellum of streptozotocin-induced diabetic rats. Free Radical Bio Med 2003;35:797-804.

Yoo HJ, Kang HJ, Jung HJ, Kim K, Lim CJ, Park EH. Anti-inflammatory, anti-angiogenic and anti-nociceptive activities of Saururus chinensis extract. J Ethnopharmacol 2008;120:282-6. doi:10.1016/j.jep.2008.08.016

Zhu F, Qian C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer's disease. BMC Neurosci 2006;7:78. doi:10.1186/1471-2202-7-78

Kulkarni SK, Dhir A. Possible involvement of l-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signaling pathway in the antidepressant activity of berberine chloride. Eur J Pharmacol 2007;569:77-83. doi:10.1016/j.ejphar.2007.05.002

Ingkaninan K, Phengpa P, Yuenyongsawad S, Khorana N. Acetylcholinesterase inhibitors from Stephania venosa tuber. J Pharm Pharmacol 2006;58:695-700. doi:10.1211/jpp.58.5.0015

Pan GY, Huang ZJ, Wang GJ, Fawcett JP, Liu XD, Zhao XC, et al. The antihyperglycaemic activity of berberine arises from a decrease of glucose absorption. Planta Med 2003;69:632-6. doi:10.1055/s-2003-41121

Li ZQ, Zuo DY, Qie XD, Qi H, Zhao MQ, Wu YL. Berberine acutely inhibits the digestion of maltose in the intestine. J Ethnopharmacol 2012;142:474-80. doi:10.1016/j.jep.2012.05.022

Liu L, Deng Y, Yu S, Lu S, Xie L, Liu X. Berberine attenuates intestinal disaccharidases in streptozotocin-induced diabetic rats. Pharmazie 2008;63:384-8.

Pan GY, Wang GJ, Sun JG, Huang ZJ, Zhao XC, Gu Y, et al. [Inhibitory action of berberine on glucose absorption]. Yao Xue Xue Bao 2003;38:911-4.

Bittner SE, Wagner GC, Aigner TG, Seiden LS. Effects of a high-dose treatment of methamphetamine on caudate dopamine and anorexia in rats. Pharmacol Biochem Behav 1981;14:481-6.

دانلود

چاپ شده

2019-03-11

شماره

نوع مقاله

مقاله پژوهشي

مقالات بیشتر خوانده شده از همین نویسنده

<< < 59 60 61 62 63 64 65 66 67 > >>