اثرات حفاظتی پنتوکسی‌فیلین بر مرگ سلولی القا شده توسط مت‌آمفتامین در سلول‌های PC12

نویسندگان

  • کمیل امینی - گروه بیوتکنولوژی، دانشکده علوم و فناوری‌های زیستی، دانشگاه اصفهان، اصفهان، ایران. orcid https://orcid.org/0000-0001-7500-8187
  • حسین ژاله - مرکز تحقیقات پیشگیری سوءمصرف مواد، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران. orcid https://orcid.org/0000-0003-0974-8480
  • محمدرضا نورایی - مرکز تحقیقاتی نانوبیوتکنولوژی، دانشگاه علوم پزشکی بقیه‌الله، تهران، ایران. orcid https://orcid.org/0000-0003-1394-6412
  • رمضانعلی طاهری - مرکز تحقیقاتی نانوبیوتکنولوژی، دانشگاه علوم پزشکی بقیه‌الله، تهران، ایران. orcid https://orcid.org/0000-0003-1394-6412

DOI::

https://doi.org/10.22100/jkh.v18i1.3076

کلمات کلیدی:

مت آمفتامین, پنتوکسی فیلین, آپوپتوزیس, مرگ سلولی

چکیده

مقدمه: سوء مصرف مت‌آمفتامین یک نگرانی جهانی در چند دهه اخیر بوده است. 5/3 میلیون نفر تحت تأثیر سوء مصرف مت‌آمفتامین قرار گرفته‌اند و این مسأله در حال افزایش است. مت‌آمفتامین موجب القای آپوپتوز در اکثر رده‌های سلولی می‌شود. به‌نظر می‌رسد پنتوکسی‌فیلین به‌عنوان یک مهارکننده فسفودی استراز، توانایی کاهش التهاب را در نتیجه توانایی کاهش مرگ سلولی ناشی از مت‌آمفتامین در سلول‌های عصبی را دارد.

مواد و روش ها: در این مطالعه، سلول‌های PC12 در محیط کشت DMEM رشد داده شدند. از آزمون MTT برای بقای سلول، آزمون LDH برای اندازه‌گیری سمیت سلولی، کیت سنجش رنگ‌سنجی فعالیت کاسپاز (Bio-techne) برای تشخیص فعالیت کاسپاز 3، رودامین 123 برای تشخیص پتانسیل غشای میتوکندری و میکروسکوپ فلورسانس برای اندازه‌گیری فعالیت آنزیم‌های آنتی‌اکسیدانی استفاده کردیم.

نتایج: پنتوکسی‌فیلین باعث افزایش بقای سلولی و جذب رودامین-123 و کاهش سمیت سلولی و فعالیت کاسپاز-3 در تمام غلظت‌های 1 نانومولار تا 100 میکرومولار شد و غلظت بهینه آن 100 میکرومولار می‌باشد (05/0<P).

نتیجهگیری: پنتوکسی‌فیلین به‌عنوان یک مهارکننده فسفودی استراز می‌تواند با اثرات ضدالتهابی خود، مرگ سلولی ناشی از مت‌آمفتامین را به میزان قابل‌توجهی کاهش دهد.

مراجع

Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. science. 2003;301(5634):805-9. Available from: https://www.science.org/doi/abs/10.1126/science.1083328.

Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410(6826):372-6. Available from: https://www.nature.com/articles/35066584.

Taupin P. Adult neurogenesis and neuroplasticity. Restor Neurol Neurosci. 2006;24(1):9-15. Available from: https://content.iospress.com/articles/restorative-neurology-and-neuroscience/rnn00325.

Panegyres P. The contribution of the study of neurodegenerative disorders to the understanding of human memory. Qjm. 2004;97(9):555-67. Available from: https://academic.oup.com/qjmed/article/97/9/555/1594855.

Leuner B, Mendolia-Loffredo S, Kozorovitskiy Y, Samburg D, Gould E, Shors TJ. Learning enhances the survival of new neurons beyond the time when the hippocampus is required for memory. J Neurosci. 2004;24(34):7477-8. Available from: https://www.jneurosci.org/content/24/34/7477.short.

Haroon E, Watari K, Thomas A, Ajilore O, Mintz J, Elderkin-Thompson V, et al. Prefrontal myo-inositol concentration and visuospatial functioning among diabetic depressed patients. Psychiatry Research: J Neuroimaging. 2009;171(1):10-9. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0925492708000498?casa_token=k0xBqiHmEa8AAAAA:ASnfeeVbZh69KPHQ-U552HxK6pB44O_PqpAZSP-T0SpXiRuH-Ag_vXFTw8S3WeznNBrWmHvwhw.

Nestler EJ. Cellular basis of memory for addiction. Dialogues Clin Neurosci. 2022. Available from:.

Sloviter RS. The neurobiology of temporal lobe epilepsy: too much information, not enough knowledge. Comptes rendus biologies. 2005;328(2):143-53. Available from: https://www.tandfonline.com/doi/full/10.31887/DCNS.2013.15.4/enestler.

Sim HI, Kim DH, Kim M. Cellular messenger molecules mediating addictive drug-induced cognitive impairment: cannabinoids, ketamine, methamphetamine, and cocaine. Future Journal of Pharmaceutical Sciences. Available from: https://link.springer.com/article/10.1186/s43094-022-00408-6. 2022;8(1):1-8.

Jones CM, Compton WM, Mustaquim D. Patterns and characteristics of methamphetamine use among adults—United States, 2015–2018. MMWR Morb Mortal Wkly Rep 2020;69(12):317. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725509/.

Steiner H, Van Waes V. Addiction-related gene regulation: Risks of exposure to cognitive enhancers vs. other psychostimulants. Prog Neurobiol. 2013;100:60-80. Available from: . https://www.sciencedirect.com/science/article/pii/S0301008212001530

Abubakar I, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117-71. Available from: https://discovery.ucl.ac.uk/id/eprint/1462383/.

Miller GM. The emerging role of trace amine‐associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. Journal of neurochemistry. 2011;116(2):164-76. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1471-4159.2010.07109.x.

Achat-Mendes C, Lynch LJ, Sullivan KA, Vallender EJ, Miller GM. Augmentation of methamphetamine-induced behaviors in transgenic mice lacking the trace amine-associated receptor 1. Pharmacol Biochem Behav. 2012;101(2):201-7. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0091305711003546.

Rogge G, Jones D, Hubert G, Lin Y, Kuhar M. CART peptides: regulators of body weight, reward and other functions. Nat Rev Neurol. 2008;9(10):747-58. Available from: https://www.nature.com/articles/nrn2493.

Vaughan RA, Foster JD. Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol Sci 2013;34(9):489-96. Available from: https://www.sciencedirect.com/science/article/abs/pii/S016561471300134X.

Underhill SM, Wheeler DS, Li M, Watts SD, Ingram SL, Amara SG. Amphetamine modulates excitatory neurotransmission through endocytosis of the glutamate transporter EAAT3 in dopamine neurons. Neuron. 2014;83(2):404-16. Available from: https://www.sciencedirect.com/science/article/pii/S0896627314004875.

Guo L-H, Schluesener H. The innate immunity of the central nervous system in chronic pain: the role of Toll-like receptors. Cell Mol Life Sci. 2007;64(9):1128-36. Available from: https://link.springer.com/article/10.1007/s00018-007-6494-3.

Dugue R, Nath M, Dugue A, Barone FC. Roles of pro-and anti-inflammatory cytokines in traumatic brain injury and acute ischemic stroke. Mech Neuroinflamm. 2017;211:4901. Available from: https://books.google.com/books?hl=en&lr=&id=_vyPDwAAQBAJ&oi=fnd&pg=PA211&dq=Dugue+R,+Nath+M,+Dugue+A,+Barone+FC.+Roles+of+pro-and+anti-inflammatory+cytokines+in+traumatic+brain+injury+and+acute+ischemic+stroke.+Mech+Neuroinflamm.+2017%3B211:4901.&ots=hPe_-iMTRU&sig=K1UNhXX4b4_C4FF5ILK5kyL6X2c#v=onepage&q&f=false.

Seo MH, Eo MY, Myoung H, Kim SM, Lee JH. The effects of pentoxifylline and tocopherol in jaw osteomyelitis. Journal of the Korean Association of Oral and Maxillofacial Surgeons. 2020;46(1):19. Available from: https://synapse.koreamed.org/upload/synapsedata/pdfdata/3070jkaoms/jkaoms-46-19.pdf.

Peterson TC, Peterson MR, Raoul JM. The effect of pentoxifylline and its metabolite-1 on inflammation and fibrosis in the TNBS model of colitis. Eur J Pharmacol. 2011;662(1-3):47-54. Available from: https://www.sciencedirect.com/science/article/pii/S0014299911004390?casa_token=yCBDuVoEdWwAAAAA:YwJWTiAEI8Y2-6ZLa_nD3X9wtjZdBuligJD6a8DeleujpPKWcr7TqQeuXa3WCOnOVF_OTRVV7g.

Van Cutsem E, Labianca R, Bodoky G, Barone C, Aranda E, Nordlinger B, et al. Randomized phase III trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage III colon cancer: PETACC-3. J Clin Oncol. 2009;27(19):3117-25. Available from: https://www.researchgate.net/profile/Gyoergy-Bodoky/publication/24436241_Randomized_Phase_III_Trial_Comparing_Biweekly_Infusional_FluorouracilLeucovorin_Alone_or_With_Irinotecan_in_the_Adjuvant_Treatment_of_Stage_III_Colon_Cancer_PETACC-3/links/568641a408ae197583971f18/Randomized-Phase-III-Trial-Comparing-Biweekly-Infusional-Fluorouracil-Leucovorin-Alone-or-With-Irinotecan-in-the-Adjuvant-Treatment-of-Stage-III-Colon-Cancer-PETACC-3.pdf.

Vukanić ZS, Čolić M, Dimitrijević M. Effect of pentoxifylline on differentiation and maturation of human monocyte-derived dendritic cells in vitro. Int Immunopharmacol. 2007;7(2):167-74. Available from: https://www.sciencedirect.com/science/article/pii/S1567576906002827?casa_token=r2iS-Axaif8AAAAA:EbkxIh1LZmmsds3b_3Q-gfbXyU2HSskywx93yWctMxJ9nl1_7TJLGwGZq64Vdmy7y9cNblwrrw.

Kuznetsova M, Shevchenko J, Khantakova J, Khristin A, Obleukhova I, Silkov A, et al. PENTOXIFYLLINE ENHANCES IN VITRO T-CELL ANTITUMOR RESPONSE IN BREAST CANCER PATIENTS. Медицинская иммунология. 2021;23(4):785-90. Available from: https://cyberleninka.ru/article/n/pentoxifylline-enhances-in-vitro-t-cell-antitumor-response-in-breast-cancer-patients.

Chinta SJ, Andersen JK. Redox imbalance in Parkinson's disease. Biochim Biophys Acta. 2008;1780(11):1362-7. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0304416508000470?casa_token=ieyVr04n44kAAAAA:BiUSkad3_wZ5Aiz6qL2Om2AgrE7w9BJ7Kh6_jm3BO2q5A-j8qMaLh_rk0Thkx23UvvRy--Zidg.

Tuppo EE, Arias HR. The role of inflammation in Alzheimer's disease. Int J Biochem. 2005;37(2):289-305. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1357272504002699?casa_token=aflUhTMUAvUAAAAA:GvljZf8lwj84eCi8OYDE6JO4LlTUl4lUpAfuLHLdlzpKcLmLQ4b4ic5S43n7VmZxGotW1NPA3w.

Block ML, Hong J-S. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76(2):77-98. Available from:. https://www.sciencedirect.com/science/article/pii/S0301008205000675?casa_token=seIvITjEUNMAAAAA:XN1u2oV38Qdjgsi3pyA5Q4k3V8RrGdtxyjksuIN_0geXMg3GNMKi4qJSPRkXdPJo5nJxz91N0Q

Simpson DS, Oliver PL. ROS generation in microglia: understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants. 2020;9(8):743. Available from: https://www.mdpi.com/2076-3921/9/8/743.

Guilarte TR. Is methamphetamine abuse a risk factor in parkinsonism? Neurotoxicology. 2001.;22(6):725-31 Available from:https://www.sciencedirect.com/science/article/abs/pii/S0161813X01000468?casa_token=SYkBEl5ETjUAAAAA:InQk1rUDBkWWjRrd1yRNGxAJSDXx9N44dSSpw_EsZU221E7iZqDm7W67-S7fTcLrC6VL8U8-Ow.

Tocharus J, Khonthun C, Chongthammakun S, Govitrapong P. Melatonin attenuates methamphetamine‐induced overexpression of pro‐inflammatory cytokines in microglial cell lines. Journal of pineal research. 2010;48(4):347-52. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-079X.2010.00761.x?casa_token=XSB6smmOVfQAAAAA%3A9wY_fVFQWpraB-lyq2dGNrlKAzvaXk3V5dl6iBBe3X05YQZH0FPdH5zNFgCbel6C_cu2r88kHHMONI0.

Lewis D, Kenneally M, van denHeuvel C, Byard RW. Methamphetamine deaths: changing trends and diagnostic issues. Medicine, Science and the Law. 2021;61(2):130-7. Available from: https://journals.sagepub.com/doi/abs/10.1177/0025802420986707.

Wang B, Chen T, Wang J, Jia Y, Ren H, Wu F, et al. Methamphetamine modulates the production of interleukin-6 and tumor necrosis factor-alpha via the cAMP/PKA/CREB signaling pathway in lipopolysaccharide-activated microglia. Int Immunopharmacol. 2018;56:168-78. Available from: https://www.sciencedirect.com/science/article/pii/S1567576918300249?casa_token=I9hq95b9nxMAAAAA:0icB36hRUxJsv9OrD46r80-t7PpV9TfBIIcdX-otpXw9a6Fx_6yk9BJGvHC5fO8ekUMU4EwpaQ.

Baratz R, Tweedie D, Wang J-Y, Rubovitch V, Luo W, Hoffer BJ, et al. Transiently lowering tumor necrosis factor-α synthesis ameliorates neuronal cell loss and cognitive impairments induced by minimal traumatic brain injury in mice. Journal of Neuroinflammation. 2015;12(1):1-14. Available from: https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-015-0237-4.

Neves KRT, Nobre HV, Leal LKA, de Andrade GM, Brito GAdC, Viana GSdB. Pentoxifylline neuroprotective effects are possibly related to its anti-inflammatory and TNF-alpha inhibitory properties, in the 6-OHDA model of Parkinson’s disease. Parkinson’s Disease. 2015;2015. Available from: https://www.hindawi.com/journals/pd/2015/108179/.

Nouri M, Movassaghi S, Soleimani M, Sharifi ZN. Protective effect of pentoxifylline on male Wistar rat testicular germ cell apoptosis induced by 3, 4-methylenedioxymeth amphetamine. Iran J Basic Med Sci. 2016;19(6):646. Available from:.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951604/.

Tian C, Murrin LC, Zheng JC. Mitochondrial fragmentation is involved in methamphetamine-induced cell death in rat hippocampal neural progenitor cells. PloS one. 2009;4(5):e5546. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005546.

Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016;1863(12):2977-92. Available from: https://www.sciencedirect.com/science/article/pii/S0167488916302324.

Su L-J, Zhang J-H, Gomez H, Murugan R, Hong X, Xu D, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019;2019. Available from https://www.hindawi.com/journals/omcl/2019/5080843/.

Kim SJ, Kim HS, Seo YR. Understanding of ROS-inducing strategy in anticancer therapy. Oxid Med Cell Longev. 2019;2019. Available from: https://www.hindawi.com/journals/omcl/2019/5381692/.

Park JH, Kim SE, Jin JJ, Choi HS, Kim CJ, Ko IG. Pentoxifylline alleviates perinatal hypoxic-ischemia-induced short-term memory impairment by suppressing apoptosis in the hippocampus of rat pups. International Neurourology Journal. 2016;20(2):107. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932643/.

Movassaghi S, Sharifi ZN, Mohammadzadeh F, Soleimani M. Pentoxifylline protects the rat liver against fibrosis and apoptosis induced by acute administration of 3, 4-methylenedioxymethamphetamine (MDMA or ecstasy). Iranian journal of basic medical sciences. 2013;16(8):922-7. Available from: http://eprints.mums.ac.ir/8112/.

Keller N, Ozmadenci D, Ichim G, Stupack D, editors. Caspase-8 function, and phosphorylation, in cell migration. Seminars in Cell & Developmental Biology; 2018: Elsevier. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1084952117305293.

Mohr A, Deedigan L, Jencz S, Mehrabadi Y, Houlden L, Albarenque S-M, et al. Caspase-10: A molecular switch from cell-autonomous apoptosis to communal cell death in response to chemotherapeutic drug treatment. Cell Death & Differentiation. 2018;25(2):340-52. Available from: https://www.nature.com/articles/cdd2017164.

de la Cadena SG, Massieu L. Caspases and their role in inflammation and ischemic neuronal death. Focus on caspase-12. Apoptosis: An International Journal on Programmed Cell Death. 2016;21(7):763. Available from: https://www.proquest.com/openview/dc245bc7dd750fcf64e0dfd95e8a81cc/1?pq-origsite=gscholar&cbl=55375.

Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death & Differentiation. 2015;22(4):526-39. Available from: https://www.nature.com/articles/cdd2014216.

Baracca A, Sgarbi G, Solaini G, Lenaz G. Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis. Biochim Biophys Acta. 2003;1606(1-3):137-46. Available from https://www.sciencedirect.com/science/article/pii/S0005272803001105.

Esteras N, Adjobo-Hermans MJ, Abramov AY, Koopman WJ. Visualization of mitochondrial membrane potential in mammalian cells. Methods Mol Biol. 155: Elsevier; 2020. p. 221-45. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0091679X19301207

Rashedinia M, Saberzadeh J, Khodaei F, Mashayekhi Sardoei N, Alimohammadi M, Arabsolghar R. Effect of sodium benzoate on apoptosis and mitochondrial membrane potential after aluminum toxicity in PC-12 cell line. Iranian Journal of Toxicology. 2020;14(4):237-44. Available from: http://ijt.arakmu.ac.ir/browse.php?a_code=A-10-677-1&slc_lang=en&sid=1.

Seo T-B, Kim T-W, Shin M-S, Ji E-S, Cho H-S, Lee J-M, et al. Aerobic exercise alleviates ischemia-induced memory impairment by enhancing cell proliferation and suppressing neuronal apoptosis in hippocampus. International Neurourology Journal. 2014;18(4):187. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280438/

Kim M, Shin MS, Lee JM, Cho HS, Kim CJ, Kim YJ, et al. Inhibitory effects of isoquinoline alkaloid berberine on ischemia-induced apoptosis via activation of phosphoinositide 3-kinase/protein kinase B signaling pathway. International neurourology journal. 2014;18(3):115. Available from: https://www.sciencedirect.com/science/article/pii/B9781483227344500176

دانلود

فایل‌های دیگر

چاپ شده

2023-11-27

شماره

نوع مقاله

مقاله پژوهشي

مقالات بیشتر خوانده شده از همین نویسنده

<< < 53 54 55 56 57 58 59 60 61 62 > >>