Investigating the Percentage of Th1 lymphocytes in Peripheral Blood of Patients with Autosomal Recessive Hyper-IgE Syndrome

Authors

  • Arezou Rahimi1 1- Dept. of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  • Zahra Chavoshzad2 2- Dept. of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  • Nima Rezaei3 3- Dept. of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
  • Mahboubeh Mansouri2
  • Delara Babaie4 4- Dept. of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  • Mohammad Nabavi5 5- Dept. of Allergy and Clinical Immunology, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
  • Hamid Farajifard6 6- Dept. of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
  • Amir Atashi7 7- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
  • Mehrdad Amirmoini8 8- Dept. of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  • Razeye Rezaei9 9- Dept. of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  • Reza Alimohammadi10 10- Dept. of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  • Mehrnaz Mesdaghi4

DOI:

https://doi.org/10.22100/jkh.v11i4.1577

Keywords:

Autosomal recessive, hyper-IgE Syndrome, IFN-γ, Th1

Abstract

Introduction: Hyper-IgE syndrome is a primary immunodeficiency disease, characterized by increased susceptibility to a limited range of fungal and bacterial infections, especially Candida Albicans and Staphylococcus Aureus. The study of different subtypes of lymphocytes would be helpful in understanding of the disease pathogenesis. In this study, the percentage of Th1 lymphocytes in peripheral blood of patients with autosomal recessive hyper-IgE syndrome was investigated.

Methods: In this case-control study, six patients with autosomal recessive hyper IgE syndrome and seven healthy controls, which were age and sex matched, were studied. Peripheral blood mononuclear cells were isolated from venous blood. After cell stimulation and culture for 12 hours, the percentage of Th1 cells was evaluated by flow cytometry.

Results: The results of this study showed that the percentage of Th1 cells was significantly decreased in patients compared to the control group (P<0.005).

Conclusion: The reduction in Th1 lymphocytes may play an important role in the pathogenesis of autosomal recessive hyper-IgE syndrome and their increased susceptibility to bacterial and fungal infections.

Author Biography

  • Nima Rezaei3, 3- Dept. of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

    گروه ایمونولوژی و آلرژی، بیمارستان کودکان مفید، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

References

Buckley RH, Wray BB, Belmaker EZ. Extreme hyperimmunoglobulinemia E and undue susceptibility to infection. Pediatrics 1972;49:59-70.

Buckley RH, Becker WG. Abnormalities in the regulation of human IgE synthesis. Immunol Rev 1978;41:288-314.

Hill H, Ochs H, Quie P, Clark R, Pabst H, Klebanoff S, et al. Defect in neutrophil granulocyte chemotaxis in Job’s syndrome of recurrent“ cold” staphylococcal abscesses. Lancet 1974;304:617-9.

Grimbacher B, Schäffer AA, Holland SM, Davis J, Gallin JI, Malech HL, et al. Genetic linkage of hyper-IgE syndrome to chromosome 4. Am J Hum Genet 1999;65:735-44. doi:10.1086/302547

Grimbacher B, Holland SM, Puck JM. Hyper IgE syndromes. Immunol Rev 2005;203:244-50. doi: 10.1111/j.0105-2896.2005.00228.x

Renner ED, Puck JM, Holland SM, Schmitt M, Weiss M, Frosch M, et al. Autosomal recessive hyperimmunoglobulin E syndrome: a distinct disease entity. J Pediatr 2004;144:93-9. doi: 10.1016/s0022-3476(03)00449-9

Grimbacher B, Holland SM, Gallin JI, Greenberg F, Hill SC, Malech HL, et al. Hyper-IgE syndrome with recurrent infections-an autosomal dominant multisystem disorder. N Engl J Med 1999;340:692-702. doi: 10.1056/nejm199903043400904

Griggs BL, Ladd S, Saul RA, DuPont BR, Srivastava AK. Dedicator of cytokinesis 8 is disrupted in two patients with mental retardation and developmental disabilities. Genomics 2008;91:195-202. doi: 10.1016/j.ygeno.2007.10.011

Ruusala A, Aspenström P. Isolation and characterisation of DOCK8, a member of the DOCK180‐related regulators of cell morphology. FEBS Lett 2004;572:159-66. doi: 10.1016/j.febslet.2004.06.095

Côté J-F, Vuori K. Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J Cell Sci 2002;115:4901-13.

Bouma G, Burns SO, Thrasher AJ. Wiskott-aldrich syndrome: immunodeficiency resulting from defective cell migration and impaired immunostimulatory activation. Immunobiology 2009;214:778-90. doi: 10.1016/j.imbio.2009.06.009

Shiow LR, Roadcap DW, Paris K, Watson SR, Grigorova IL, Lebet T, et al. The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency. Nat Immunol 2008;9:1307-15. doi: 10.1038/ni.1662

Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 2007;25:821-52. doi: 10.1146/annurev.immunol.25.022106.141557

Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. Blood 2008;112:1557-69. doi: 10.1182/blood-2008-05-078154

Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 2007;357:1608-19. doi: 10.1056/NEJMoa073687

Buckley RH. Primary immunodeficiency diseases: dissectors of the immune system. Immunol Rev 2002;185:206-19.

Rezaei N, Pourpak Z, Aghamohammadi A, Farhoudi A, Movahedi M, Gharagozlou M, et al. Consanguinity in primary immunodeficiency disorders; the report from Iranian primary immunodeficiency registry. Am J Reprod Immunol 2006;56:145-51. doi: 10.1111/j.1600-0897.2006.00409.x

Saadat M, Ansari-Lari M, Farhud DD. Short report consanguineous marriage in Iran. Ann Hum Biol 2004;31:263-9. doi: 10.1080/03014460310001652211

Boos AC, Hagl B, Schlesinger A, Halm BE, Ballenberger N, Pinarci M, et al. Atopic dermatitis, STAT3‐and DOCK8‐hyper‐IgE syndromes differ in IgE‐based sensitization pattern. Allergy 2014;69:943-53. doi: 10.1111/all.12416

Freeman AF, Holland SM. NIH Public Access. Pediatr Res 2009;65:32R-37R.

Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 2003;300:339-42. doi: 10.1126/science.1083317

Mitsdoerffer M, Lee Y, Jäger A, Kim H-J, Korn T, Kolls JK, et al. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc Natl Acad Sci 2010;107:14292-7. doi: 10.1073/pnas.1009234107

Sun JC, Williams MA, Bevan MJ. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 2004;5:927-33. doi: 10.1038/ni1105

Romagnani S. The Th1/Th2 paradigm. Immunol Today 1997;18:263-6.

McAdam AJ, Pulaski BA, Harkins SS, Hutter EK, Lord EM, Frelinger JG. Synergistic effects of co‐expression of the Th1 cytokines il‐2 and IFNγ on generation of murine tumor‐reactive cytotoxic cells. Int J Cancer 1995;61:628-34. doi: 10.1002/ijc.2910610508

Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000;100:655-69.

Borges WG, Augustine NH, Hill HR. Defective interleukin-12/interferon-γ pathway in patients with hyperimmunoglobulinemia E syndrome. J Pediatr 2000;136:176-80.

Ling Y, Cypowyj S, Aytekin C, Galicchio M, Camcioglu Y, Nepesov S, et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med 2015;212:619-31. doi: 10.1084/jem.20141065

King CL, Gallin JI, Malech HL, Abramson SL, Nutman TB. Regulation of immunoglobulin production in hyperimmunoglobulin E recurrent-infection syndrome by interferon gamma. Proc Natl Acad Sci 1989;86:10085-9.

Hoag KA, Lipscomb MF, Izzo AA, Street NE. IL-12 and IFN-γ are required for initiating the protective Th1 response to pulmonary cryptococcosis in resistant CB-17 mice. Am J Respir Cell Mol Biol 1997;17:733-9.

Kohno K, Kataoka J, Ohtsuki T, Suemoto Y, Okamoto I, Usui M, et al. IFN-gamma-inducing factor (IGIF) is a costimulatory factor on the activation of Th1 but not Th2 cells and exerts its effect independently of IL-12. J Immunol 1997;158:1541-50.

Netea MG, Schneeberger PM, De Vries E, Kullberg BJ, Van Der Meer JW, Koolen MI. Th1/Th2 cytokine imbalance in a family with hyper-IgE syndrome. Neth J Med 2002;60:349-53.

Woellner C, Gertz EM, Schäffer AA, Lagos M, Perro M, Glocker E-O, et al. Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. J Allergy Clin Immunol 2010;125:424-32. doi: 10.1016/j.jaci.2009.10.059

Published

2017-02-05

Issue

Section

Original Article(s)

How to Cite

Investigating the Percentage of Th1 lymphocytes in Peripheral Blood of Patients with Autosomal Recessive Hyper-IgE Syndrome. (2017). Knowledge and Health in Basic Medical Sciences, 11(4), page:56-62. https://doi.org/10.22100/jkh.v11i4.1577

Most read articles by the same author(s)

<< < 4 5 6 7 8 9 10 11 12 13 > >>