Effects of Biological Nanoparticles of Silver Produced by Fusarium Fungus with Two Types of Pre-Conditioning on Morphological Changes in Brain Tissue of Male Wistar Rats
DOI:
https://doi.org/10.22100/jkh.v14i2.2257Keywords:
Silver biological nanoparticles, Aerobic exercise protocol, Anaerobic training protocols, Pre-conditioning, Brain tissueAbstract
Introduction: Today, the production of biological nanoparticles has expanded significantly in different industries. Although their side effects have not yet been fully evaluated on brain tissue. In addition, by applying a stressor stimulus less than the threshold for injury to the tissue (pre-preparation), such as physical activity, it can increase the resistance of the tissue to more powerful stimuli. Therefore, the purpose of this study was to investigate the effect of high dose doses of biological nanoparticles with two different types of training prediction on structural changes in brain tissue of male Wistar rats.
Methods: A total of 30 male Wistar rats were divided into 6 groups including healthy control, silver biological nanoparticles, aerobic exercise protocols, training protocols 2 (anaerobes), biological biological nanoparticles + exercise protocols 1, biological nanoparticles Silver + Practice Protocol 2 was done. Intraperitoneal injection of silver nanoparticles after 10 weeks of aerobic and anaerobic treatments was performed on 10% of body weight of each rat in 5 times. After 48 hours after the last injection, rats were indifferent and sample was taken. The specimens were then photographed and stained with Hematoxylin-Eosin stained with optical microscopy.
Results: The results of this study showed that aerobic training and anaerobic exercise training had a significant effect on the distance traveled in the progressive endurance test on rodent treadmill (P=0.000) and body weight (P=0.000). Intraperitoneal injection of high-dose silver nanoparticles also caused inflammation and mild inflammation of brain tissue in untreated rats, and the white matter and gray matter of nerve cells did not change. On the other hand, it was reduced trained groups and in the aerobic training group it was more significant than anaerobic.
Conclusion: Pre-conditioning of aerobic training can be effective in reducing the degree of brain tissue damage caused by the injection of silver biologic nanoparticles.
References
Win-Shwe TT, Fujimaki H. Nanoparticles and Neurotoxicity. Int J Mol Sci 2011;12:6267-80. doi:10.3390/ijms12096267
Locht L J, Pedersen M Ø, Markholt S, Bibby BM, Larsen A, Penkowa M, et al. Metallic silver fragments cause massive tissue loss in the mouse brain. Basic Clin Pharmacol Toxicol 2011;109:1-10. doi:10.1111/j.1742-7843.2010.00668.x
Hadrup N, Loeschner K, Mortensena A, Sharmaa A.K, Qvortrupc K, Larsen E.H, et al. The similar neurotoxic effects of nanoparticulate and ionic silver in vivo and in vitro. Neurotoxicology 2012;33:416-23. doi:10.1016/j.neuro.2012.04.008
Panayala NR, Pena-Mendez ME, Havel J. Silver or silver nanoparticles. J Appl Biomed 2008;6:117-29. doi:10.32725/jab.2008.015
Borm P, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, et al. The potential risks of nanomaterials: a review carried out for ECETOC. Particle and Fibre Toxicology 2006;3:1-35. doi:10.1186/1743-8977-3-11
Prasad K, Jha AK, Kulkarni A. Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2007;2:248-50. doi:10.1007/s11671-007-9060-x
Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009;27:76-83. doi:10.1016/j.biotechadv.2008.09.002
Prucek R, Ranc V, Balzerová O, Panáček A, Zboĭil R, Kvítek L. Preparation of silver particles and its application for surface enhanced Raman scattering with near-infrared excitation. Materials Research Bulletin 2014;50:63-7. doi: 10.1016/j.materresbull.2013.10.014
Elechiguerra J, Burt J, Morones J, Camacho – Bragado A, Gao X, Lara H, Yacaman M. Interactionof silver nanoparticles with HIV–1. J Nanobiotechnology 2005;3:1-10. doi:10.1186/1477-3155-3-6
Azami F, S A Manafi, P Pourali. Production of silver nanoparticles by the fungus fusarium oxysporum that was cultured in different environmental conditions and comparision of their antibacterial efficiency whith each other. Jornal of Nanomaterials I.A.U Shahroud Branch 2018;10:178-187.
William J, Trickler Susan M, Lantz Richard C, Murdock Amanda M, Schrand Bonnie L, Robinson Glenn D, et al. Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicological Sciences 2010;118:160-170. doi:10.1093/toxsci/kfq244
Warburton Darren ER, Bredin Shannon SD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol 2017;32:541-56. doi:10.1097/hco0000000000000437
Bothwell M. Recent advances in understanding neurotrophin signaling. F1000Res 2016;5:1-9. doi:10.12688/f1000research.8434.1.ecollection 2016
Arora S, Jain J, Rajwade JM, Paknikar KM. Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 2008; 179:93-100. doi:10.1016/j.toxlet.2008.04.009
Hoelting L, Scheinhardt B, Bondarenko O, Schildknecht S, Kapitza M, Tanavde V, et al. A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles. Arch Toxicol 2013;87:721-33. doi:10.1007/s00204-012-012-0984-2
Liu Y, Guan W, Ren G, Yang Z. The possible mechanism of silver nanoparticle impact on hippocampal synaptic plasticity and spatial cognition in rats. Toxicol Lett 2012; 209:227-31. doi:10.1016/j.toxlet.2012.01.001
Wu J, Wang C, Sun J, Xue Y. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano 2011;5:4476-89. doi:10.1021/nn103530b
Mogharnasi M, Bayat J, Foaddini M, Salehinia A, Hosseini M, Shhamat Nashtifani F.The effect of colostrum along whith aerobic and anaerobic exercise on lipid peroxidation and total antioxidant capacity of male wistar rats. Armaghan-e-Danesh 2016;21:265-277.
Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 2010;396:578-83. doi:10.1016/j.bbrc.2010.04.156
Ishida K, Cipriano TF, Rocha GM, Weissmuller G, Gomes F, Miranda K, et al. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Memorias do Instituto Oswaldo Cruz 2014;109:220. doi:10.1590/0074-0276130269
Nasrollahzade H, Khodarahmi P, Nasrabadi M. Evaluation of necrotic effects of intraperitoneal administration of nano-silve on rat hippocampal cells. Journal of Animal Physiology and Development 2015;28:23-31.
Xu L, Shao A, Zhao Y, Wang Z, Zhang C, Sun Y, et al. Neurotoxicity of silver nanoparticles in rat brain after intragastric exposure. Journal of Nanoscience and Nanotechnology 2015;15:4215-23. doi:10.1166/jnn.2015.9612
Cramer S, Tacke S, Bornhorst J, Klingauf G, Schwerdtle T, Galla HJ. The influence of silver nanoparticles on the blood-brain and the blood-cerebrospinal fluid barrier in vitro. J Nanomed Nanotech 2014;5:1-12.
Joanna Skalska, Małgorzata Frontczak-Baniewicz, Lidia Strużyńska. Synaptic degeneration in rat brain after prolonged oral exposure to silver nanoparticles. NeuroToxicology 2015;46:145-54. doi:10.1016/J.NEURO.2014.11.002
Nithya R, Ragunathan R. Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Dig J nanomater biostruct 2009;4:9-623.
Gonzalez-Carter DA, Leo BF, Ruenraroengsak P, Chen SE, Goode A, Theodorou LG, et al. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Sci Rep 2017;7. doi:10.1038/srep42871
Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, et al. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 2010;30:162-8. doi:10.1016/j.etap.2010.05.004
Nagender Reddy Panyala, Eladia Maria Pena-Mendez, Josef Havel. Silver or silver nano-particles: a hazardous threat to the environments and human healyh?. Journal of applied medicine 2008;6:117-129. doi:10.32725/jab.2008.015
Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001;24:677-736. doi:10.1146/annurev.neuro.24.1.677
Miller FD, Kaplan DR. Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol Life Sci 2001;58:1045-53. doi: 10.1007/pl00000919
Dornbos III D, Ding Y. Mechanisms of neuroprotection underlying physical exercise in ischemia-reperfusion injury. In Tech 2012; p. 299-326. doi:10.5772/32119
Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 2003;4:399-414. doi:10.1038/nrn1106
Zhang F, Wu Y, Jia J. Exercise preconditioning and brain ischemic tolerance. Neuroscience 2011; 177: 170-76. doi:10.1016/j.neuroscience.2011.01.018
Ding Y, Li J, Luan X, Ding YH, Lai Q, Rafols J, et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience 2004;124:583-591. doi: 10.1016/j.neuroscience.2003.12.029
Bullitt E, Rahman F, Smith J, Kim E, Zeng D, Katz L, et al. The effect of exercise on the cerebral vasculature of healthy aged subjects as visualized by MR angiography. Am J Neuroradiol 2009;30:1857-63. doi:10.3174/ajnr.A1695
Obrenovitch TP. Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 2008;88:211-47. doi:10.1152/physrev.00039.2006
Hamakawa M, Ishida A, Tamakoshi K, Shimada H, Nakashima H, Noguchi T, et al. Repeated short-term daily exercise ameliorates oxidative cerebral damage and the resultant motor dysfunction after transient ischemia in rats. J Clin Biochem Nutr 2013;53:8-14.
Samadi A, Exercise Preconditioning and Neuroprotection: A Review of Mechanisms. The Neuroscience Journal of Shefaye Khatam 2015;3:115-130. doi:10.18869/acadpub.shefa.3.1.115
Vollert C, Zagaar M, Hovatta I, Taneja M, Vu A, Dao A, et al. Exercise prevents sleep deprivationassociated anxiety-like behavior in rats: potential role of oxidative stress mechanisms. Behav Brain Res 2011;224:233-240. doi:10.1016/j.bbr.2011.05.010
Barari AR, Bashiri J, Rahimi AR, Mokhtari E. The effect of endurance and circuit resistance training on serum brain-deriveved neurotrophic factor and cortisol in inactive male students: A randomized clinical trial. J Shahrekord Univ Med Sci 2015;17:43-53.
Del Bonis-O Donnell JT, Chio L, Dorlhiac GF, MCfarilane IR, Landry MP. Advances in nanomaterials for brain microscopy. Nano Research 2018;11:1-29. doi:10.1007/s12274-018-2145-2
Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124-36. doi:10.1161/01.cir.74.5.1124
Dirnagl U, Meisel A. Endogenous neuroprotection: mitochondria as gateways to cerebral preconditioning? Neuropharmacology 2008;55: 433-44. doi:10.1016/j.neuropharm.2008.02.017
Del Zoppo GJ. The neurovascular unit in the setting of stroke. J Intern Med 2010;267:156-71.
Kochanski R, Dornbos III D, Ding Y. Neuroprotection and Physical Preconditioning: Exercise, Hypothermia, and Hyperthermia. Innate Tolerance in the CNS: Springer 2013; p. 105-31.
Wang X, Zhang M, Feng R, Li WB, Ren SQ, Zhang J, et al. Physical exercise training and neurovascular unit in ischemic stroke. Neuroscience 2014;271:99-107. doi:10.1016/j.neuroscience.2014.04.030
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.