The Effects of Resistance Training with and without Blood Flow Restriction on Platelet Indices and Microparticles in Type 2 Diabetic Patients

Authors

DOI:

https://doi.org/10.22100/jkh.v17i3.2728

Abstract

Introduction: Type 2 diabetes mellitus (T2DM) is associated with thrombotic events due to platelets’ defects. The aim of this study was to investigate the effects of resistance training with and without blood flow restriction on markers of platelet activation in T2DM patients.

Methods: Forty-one T2DM patients (age, 50.2±9.3 years, BMI, 31.0±5.2 kg/m2) were randomly divided into three groups of control (CONT), resistance training (RT), and resistance training with blood flow restriction (RTBFR). The subjects in RT group performed 8 weeks of resistance training (knee extension exercise) included three sets of 20 repetitions at 20% of one-repetition maximum (1RM) for the first 2 weeks. Thereafter, the training intensity increased by 20% and the number of repetitions decreased accordingly, every two weeks. Subjects in RTBFR group performed 8 weeks of resistance training encompassed 3 sets of 15 repetitions at 20% of 1RM with blood flow restriction for the first 4 weeks. For the last four weeks of training the training intensity increased by 30%. During this period, the subjects in control group followed their normal life. platelet indices, fibrinogen and markers of platelet activation were measured one day prior to the first training session and 48 hours after last training session.

Results: Within-group comparisons revealed significant changes in platelet indices and markers of platelet activation following 8 weeks of resistance training (P<0.05). However, between-group comparisons showed higher reductions in P-selectin and increases in CD41 in RT group compared to RTBFR, whereas, reductions in fibrinogen levels occurred more pronouncedly in RTBFR group than RT group (P<0.05).

Conclusion: Based on the findings of the present study, it could be concluded that resistance training improves platelet activation in T2DM patients and that lower intensity resistance training with blow flow restriction results in similar adaptations in platelet factors compared to higher intensity resistance training in T2DM patients. Therefore, the RTBFR method could be a safer RT protocol prescribed for diabetic patients.

References

Schafer A, Bauersachs J. Endothelial dysfunction, impaired endogenous platelet inhibition and platelet activation in diabetes and atherosclerosis. Curr Vasc Pharmacol 2008;6:52-60. doi: 10.2174/157016108783331295

Suslova TE, Sitozhevskii AV, Ogurkova ON, Kravchenko ES, Kologrivova IV, Anfinogenova Y, et al. Platelet hemostasis in patients with metabolic syndrome and type 2 diabetes mellitus: cGMP-and NO-dependent mechanisms in the insulin-mediated platelet aggregation. Front Physiol 2015;5:501. doi: 10.3389/fphys.2014.00501. eCollection 2014

Devlin JT, Ruderman N. Diabetes and exercise: the risk-benefit profile revisited. In Handbook of Exercise in Diabetes. Ruderman N, Devlin JT, Schneider SH, Krisra A, Eds. Alexandria, VA, American Diabetes Association 2002;37-46.

Micalos P, Marino F, Tarpenning K, Kay D, Gard M. Ammonia and lactate responses to isokinetic arm and leg exercise. Isokinet Exerc Sci 2001;9:143-9. doi: 10.3233/IES-2001-0069

De Meirelles L, Mendes-Riberio A, Mendes M, Da Silva M, Joun Clive Ellory J, Mann G, et al. chronic exercise reduces platelet activation in hypertension: upregulation of the l-arginine-nitric oxide pathway. Scand J Med Sci Sports 2009;19:67-74. doi: 10.1111/j.1600-0838.2007.00755.x

Ahmadizad S, El-Sayed MS. The effects of graded resistance exercise on platelet aggregation and activation. Med Sci Sports Exerc 2003;35:1026-32. doi: 10.1249/01.MSS.0000069406.54766.C6

Kim S, Sherk V, Bemben M, Bemben D. Effects of shortterm, low-intensity resistance training with vascular restriction on arterial compliance in untrained young men. IJKTR 2009;5:1-8; doi: 10.3806/ijktr.5.1

Evans C, Vance S, Brown M. Short-term resistance training with blood flow restriction enhances microvascular filtration capacity of human calf muscles. J Sports Sci 2010;28:999-1007. doi: 10.1080/02640414.2010.485647

Amini A, Kordi M, Gaeini A, Ahmadi A, Vesi K. The effect of resistance training on coagulation and fibrinolytic factors in passive elderly men. Quar Ofogh Dan 2012;18:104-8.

Fry CS, Glynn EL, Drummond MJ, Timmerman KL, Fujita S, Abe T, et al. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol 2010;108:1199-209. doi: 10.1152/japplphysiol.01266.2009

Cauza E, Hanusch-Enserer U, Strasser B, Ludvik B, Metz-Schimmerl S, Pacini G, Wagner O, Georg P, Prager R, Kostner K, et al. The Relative Benefits of Endurance And Strength Training On The Metabolic Factors And Muscle Function Of People With Type 2 Diabetes Mellitus. Arch Phys Med Rehabil 2005;86:1527-33. doi.org/10.1016/j.apmr.2005.01.007

Santilli F, Vazzana N, Iodice P, Lattanzio S, Liani R, Bellomo RG, et al. Effects of high-amount–high-intensity exercise on in vivo platelet activation: Modulation by lipid peroxidation and AGE/RAGE axis. Thromb Haemost 2013;110:1232-40. doi: 10.1160/TH13-04-0295

Keating FK, Schneider DJ, Savage PD, Bunn JY, Harvey-Berino J, Ludlow M, et al. Effect of exercise training and weight loss on platelet reactivity in overweight patients with coronary artery disease. J Cardiopulm Rehabil Prev 2013;33:371-7.

Bobeuf F, Labont´e M, Khalil A, Dionne1 IJ. Effect of resistance training on hematological blood markers in older men and women: a pilot study. Curr Gerontol Geriatr Res 2009;2009:156820. doi: 10.1155/2009/156820

Tartibian B, Hosseinpour Motlagh Z, Hosseini Kakhak S.A. The effect of resistance training and non-training on fibrinogen, plasma concentration and blood cells in obese girls 2009;1:27-37.

Hulmi JJ, Myllymäki T, Tenhumäki M, Mutanen N, Puurtinen R, Paulsen G, et al. Effects of resistance exercise and protein ingestion on blood leukocytes and platelets in young and older men. European journal of applied physiology. Eur J Appl Physiol 2010;109:343-53. doi: 10.1007/s00421-010-1360-7

Tayebi SM, Hanachi P, Niaki AG, Ali PN, Ghaziani FG. Ramadan fasting and weight-lifting training on vascular volumes and hematological profiles in young male weight-lifters. Glob J Health Sci 2010;2:160-6.

Tayebi SM, Agha Alinejad H, Kiadaliri K, Ghorbanalizadeh Ghaziani F. Assessment of CBC in physical activity and sport: a brief review. Blood Journal 2011;7:239-65.

Ahmadizad S, Maleki M, Naderi N, Rahmani H, et al. Comparison of the effects of 8 weeks of high intensity interval training and continuous training on P-selectin expression and platelet indices in cardiovascular disease. Sport and Exercise Physiology 2016;17:1355-64.

Demirtunc R, Duman D, Basar M, Bilgi M, Teomete M, Garip T. The relationship between glycemic control and platelet activity in type 2 diabetes mellitus. J Diabetes Complications 2009;23:89-94. doi: 10.1016/j.jdiacomp.2008.01.006

Alhadas KR, Santos SN, Freitas MM, Viana SM, Ribeiro LC, Costa MB. Are platelet indices useful in the evaluation of type 2 diabetic patients? J Bras Patol Med Lab 2016;52:96-102.

Ferreiro JL, Gómez-Hospital JA, Angiolillo DJ. Platelet abnormalities in diabetes mellitus. Diabetes Vasc Dis Res 2010;7:251-9. doi: 10.1177/1479164110383994

Brown AS, Hong Y, de Belder A, Beacon H, Beeso J, Sherwood R, et al. Megakaryocyte plpidy and platelet changes in human diabetes and atherosclerosis. Arterioscler Thromb Vasc Biol 1997;17:802-7. doi: 10.1161/01.atv.17.4.802

Nofer JR, Brodde MF, Kehrel BE. High‐density lipoproteins, platelets and the pathogenesis of atherosclerosis. Clin Exp Pharmacol Physiol 2010;37:726-35. doi: 10.1111/j.1440-1681.2010.05377.x

Koutroumpi M, Dimopoulos S, Psarra K, Kyprianou T, Nanas S. Circulating endothelial and progenitor cells: Evidence from acute and long-term exercise effects. World J Cardiol 2012;4:312-26. doi: 10.4330/wjc.v4.i12.312

Kim JS, Kim B, Lee H, Thakkar S, Babbitt DM, Eguchi S, et al. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells. Am J Physiol Hear Circ Physiol 309:H425-33. doi: 10.1152/ajpheart.00438.2014

Dautov RF, Stafford I, Liu S, Cullen H, Madhani M, Chirkov YY, Horowitz JD. Hypoxic potentiation of nitrite effects in human vessels and platelets. Nitric Oxide 2014;40:36-44. doi: 10.1016/j.niox.2014.05.005

Akrawinthawong K, Park JW, Piknova B, Sibmooh N, Fucharoen S, Schechter AN. A flow cytometric analysis of the inhibition of platelet reactivity due to nitrite reduction by deoxygenated erythrocytes. PLoS One 2014;9:e92435. doi: 10.1371/journal.pone.0092435

Gao Y. Conventional and unconventional mechanisms for soluble guanylyl cyclase signaling. J Cardiovasc Pharmacol 2016;67:367-72. doi: 10.1097/FJC.0000000000000330

Amouzad Mahdirajei H, Mirsaiedii M, Fadaei S, Abadei R. Compare the effect of 4 weeks of resistance and aerobic training on blood coagulation and fibrinolytic factors in inactive older men. Medical Journal of Mashhad University of Medical Sciences 2013; 56:150-8.

Smith JE, Garbutt G, Lopes P, Pedoe DT. Effects of prolonged strenuous exercise (marathon running) on biochemical and haematological markers used in the investigation of patients in the emergency department. Br J Sports Med 2004;38:292-94. doi: 10.1136/bjsm.2002.002873

Boutcher SH, Meyer BJ, Craig GA, Astheimer L. Plasma lipid and fibrinogen levels in aerobically trained and untrained postmenopausal women. J Sports Med Phys Fitness 2003;43:231-5.

Kiouptsi K, Gambaryan S, Walter E, Walter U, Jurk K, Reinhardt C. Hypoxia impairs agonist-induced integrin αIIbβ3 activation and platelet aggregation. Sci Rep 2017;7:7621. doi: 10.1038/s41598-017-07988-x

Gorodetsky AA, Kirilyuk IA, Khramtsov VV, Komarov DA. Functional electron paramagnetic resonance imaging of ischemic rat heart: Monitoring of tissue oxygenation and pH. Magn Reson Med 2016;76:350-8. doi: 10.1002/mrm.25867

Ayers L, Stoewhas AC, Ferry B, Latshang TD, Lo Cascio CM, Sadler R, Stadelmann K, Tesler N, Huber R, Achermann P, Bloch KE, Kohler M. Circulating levels of cell-derived microparticles are reduced by mild hypobaric hypoxia: data from a randomised controlled trial. Eur J Appl Physiol 2014;114:1067-73. doi: 10.1007/s00421-014-2837-6

Berckmans RJ, Nieuwland R, Boing AN, Romijn FP, Hack CE, Sturk A. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 2001;85:639-46. doi: 10.1055/s-0037-1615646

Highton P, Martin N, Smith A, Burton J, Bishop N. Microparticles and Exercise in Clinical Populations. Exerc Immunol Rev 2018; 24:46-58.

Keating F, Schneider D, Savage P, Bunn J, Harvey-Berino J, Ludlow M, et al. Effect of exercise training and weight loss on platelet reactivity in overweight patients with coronary artery disease. J Cardiopulm Rehabil Prev 2013;23:371-7. doi: 10.1097/HCR.0000000000000015

Ciolac EG. High-intensity interval training and hypertension: maximizing the benefits of exercise? Am J Cardiovasc Dis 2012;2:102.

Wang JS, Li YS, Chen JC, Chen YW. Effects of exercise training and deconditioning on platelet aggregation induced by alternating shear stress in men. Arterioscler Thromb and Vasc Biol 2005;25:454-60. doi: 10.1161/01.ATV.0000151987.04607.24

Ruslan N-H, Ghosh AK, Hassan R. A Comparative Study on Platelet Activation Markers Between Continuous and Intermittent Exercise Training Programs in Healthy Males. Journal of Hematology 2014;3:72-5.

El-Sayed MS, Younesian A, Rahman K, Ismail FM, Ali ZE. The effects of arm cranking exercise and training on platelet aggregation in male spinal cord individuals. Thromb Res 2004;113:129-36. doi: 10.1016/j.thromres.2004.02.014

Haybar H, Khodadi E, Zibara K, Saki N. Platelet activation polymorphisms in ischemia. Cardiovasc Hematol Disord Drug Targets 2018;18:153-161. doi: 10.2174/1871529X18666180326121239

Bittencourt O, Izar O, França CN, Schwerz S, Póvoa S, Fonseca H. Effects of chronic exercise on endothelial progenitor cells and microparticles in professional runners. Arq Bras Cardiol 2017; 108:212-216. doi: 10.5935/abc.20170022

Pitha J, Lesna IK, Stávek P, Mahrová A, Racek J, Sekerková A, Teplan V, Stollova M. Effect of exercise on markers of vascular health in renal transplant recipients. Physiol Res 2015;64:945. doi: 10.33549/physiolres.933123

Laufs U, Werner N, Link A, Endres M, Wassmann S, Jürgens K, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 2004;109:220-6. doi: 10.1161/01.CIR.0000109141.48980.37

Aurigemma C, Fattorossi A, Sestito A, Sgueglia GA, Farnetti S, Buzzonetti A, Infusino F, Landolfi R, Scambia G, Crea F, Lanza GA. Relationship between changes in platelet reactivity and changes in platelet receptor expression induced by physical exercise. Thromb Res 2007;120:901-9. doi: 10.1016/j.thromres.2007.01.009

Wang JS, Chow SE. Effects of exercise training and detraining on oxidized low-density lipoprotein-potentiated platelet function in men. Arch Phys Med Rehabil 2004;85:1531-7. doi: 10.1016/j.apmr.2003.08.112

Published

2022-09-28

Issue

Section

Original Article(s)

How to Cite

The Effects of Resistance Training with and without Blood Flow Restriction on Platelet Indices and Microparticles in Type 2 Diabetic Patients. (2022). Knowledge and Health in Basic Medical Sciences, 17(3), Page:52-62. https://doi.org/10.22100/jkh.v17i3.2728

Most read articles by the same author(s)

<< < 10 11 12 13 14 15 16 17 18 19 > >>