Protective Effect of Thymoquinone Against Fluoxetine-Induced Liver Damage Through Enhancing Antioxidant and Anti-Inflammatory System in Male Rats

Authors

DOI:

https://doi.org/10.22100/jkh.v18i1.2875

Abstract

Introduction: Fluoxetine is a drug used to treat depression and has toxic effects on liver cells. Thymoquinone, the most important active ingredient in black seed (Nigella sativa), has several pharmacological effects, including sedation, reduced motor activity, and muscle relaxation. This study aimed to investigate the effect of thymoquinone on reducing the hepatotoxicity effects of fluoxetine.

Methods: A total of forty Wistar rats were treated with fluoxetine, thymoquinone, and silymarin for four weeks. Different techniques, including biochemical analysis, qRT-PCR, and histopathological examination, were performed to investigate the effect of drugs on the oxidant/antioxidant system and inflammatory responses.

Results: Our results revealed that fluoxetine increased lipid peroxidation and protein oxidation and inhibited antioxidant systems in rat hepatocytes. In addition, fluoxetine increased the expression of the proinflammatory cytokine TNF-α and also the migration of lymphocytes to liver cells. In contrast, thymoquinone (10, 20, and 40 mg/kg) significantly decreased MDA, PC, and TNF-α levels. Moreover, thymoquinone enhanced the catalytic activity of antioxidant enzymes, including catalase, superoxide dismutase, glutathione peroxidase, and GSH. Thymoquinone only at a dose of 40 mg/kg can inhibit the infiltration of lymphocytes into the liver.

Conclusion: Thymoquinone exerted liver protective effects against fluoxetine hepatotoxicity by inducing antioxidant and anti-inflammatory activities. This study suggests that thymoquinone, in combination with fluoxetine, can be used to reduce liver damage.

References

Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003;289:3095-105. doi: 10.1001/jama.289.23.30950

Thompson SM, Kallarackal AJ, Kvarta MD, Van Dyke AM, LeGates TA, Cai X. An excitatory synapse hypothesis of depression. Trends Neurosci 2015;38:279-94. doi: 10.1016/j.tins.2015.03.003

Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci 2015;38:637-58. doi: 10.1016/j.tins.2015.08.001

Hodes GE, Kana V, Menard C, Merad M, Russo SJ. Neuroimmune mechanisms of depression. Nat Neurosci 2015;18:1386-93. doi: 10.1038/nn.4113

Lang UE, Borgwardt S. Molecular mechanisms of depression: perspectives on new treatment strategies. Cell Physiol Biochem 2013;31:761-77. doi: 10.1159/000350094

Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 2006;163:28-40. doi: 10.1176/appi.ajp.163.1.28

Perez-Caballero L, Torres-Sanchez S, Bravo L, Mico JA, Berrocoso E. Fluoxetine: a case history of its discovery and preclinical development. Expert Opin Drug Discov 2014;9:567-78. doi: 10.1517/17460441.2014.907790

Emslie GJ, Heiligenstein JH, Wagner KD, Hoog SL, Ernest DE, Brown E, et al. Fluoxetine for acute treatment of depression in children and adolescents: a placebo-controlled, randomized clinical trial. J Am Acad Child Adolesc Psychiatry 2002;41:1205-15. doi: 10.1097/00004583-200210000-00010

Nikam BP, Kale M, Jamale V, Arora T, Hussain A, Shrivastav N. Safety and efficacy of fluoxetine in the treatment of acne excoriée: a double-blind, placebo-controlled study. Iranian Journal of Dermatology 2020;23:98-104. doi: 10.22034/ijd.2020.111546

Hiemke C, Hartter S. Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 2000;85:11-28. doi: 10.1016/s0163-7258(99)00048-0

Inkielewicz-Stepniak I. Impact of fluoxetine on liver damage in rats. Pharmacol Rep 2011;63:441-7. doi: 10.1016/s1734-1140(11)70510-2

Lee JY, Lee HE, Kang SR, Choi HY, Ryu JH, Yune TY. Fluoxetine inhibits transient global ischemia-induced hippocampal neuronal death and memory impairment by preventing blood-brain barrier disruption. Neuropharmacology 2014;79:161-71. doi: 10.1016/j.neuropharm.2013.11.011

Fujihara J, Tongu M, Hashimoto H, Fujita Y, Nishimoto N, Yasuda T, et al. Pro-inflammatory responses and oxidative stress induced by ZnO nanoparticles in vivo following intravenous injection. Eur Rev Med Pharmacol Sci 2015;19:4920-6.

Liu L, Tao R, Huang J, He X, Qu L, Jin Y, et al. Hepatic oxidative stress and inflammatory responses with cadmium exposure in male mice. Environ Toxicol Pharmacol 2015;39:229-36. doi:10.1016/j.etap.2014.11.029

Zhan X, Wang F, Gevaert O. Filter drug-induced liver injury literature with natural language processing and ensemble learning. Iranian Red Crescent Medical Journal 2022. doi: 10.48550/arXiv.2203.11015

Hong-Mei Z, Guang-Chen L, Yang-Fang H, Zhou W, Hou J-Q. Liver injury induced by the interaction between fluoxetine and celecoxib: a case report and the literature review. Iranian Red Crescent Medical Journal 2019;21. doi: 10.5812/ircmj.93271

Gaertner I, Altendorf K, Batra A, Gaertner HJ. Relevance of liver enzyme elevations with four different neuroleptics: a retrospective review of 7,263 treatment courses. J Clin Psychopharmacol 2001;21:215-22. doi: 10.1097/00004714-200104000-00014

Yajima D, Motani H, Hayakawa M, Sato Y, Sato K, Iwase H. The relationship between cell membrane damage and lipid peroxidation under the condition of hypoxia-reoxygenation: analysis of the mechanism using antioxidants and electron transport inhibitors. Cell Biochem Funct 2009;27:338-43. doi: 10.1002/cbf.15780

Muradian KK, Utko NA, Fraifeld V, Mozzhukhina TG, Pishel IN, Litoshenko AY. Superoxide dismutase, catalase and glutathione peroxidase activities in the liver of young and old mice: linear regression and correlation. Arch Gerontol Geriatr 2002;35:205-14. doi: 10.1016/s0167-4943(02)00025-0

Kassab RB, El-Hennamy RE. The role of thymoquinone as a potent antioxidant in ameliorating the neurotoxic effect of sodium arsenate in female rat. Egyptian Journal of Basic and Applied Sciences 2019;4:160-7. doi: 10.1016/j.ejbas.2017.07.002

Rifaioglu MM, Nacar A, Yuksel R, Yonden Z, Karcioglu M, Zorba OU, et al. Antioxidative and anti-inflammatory effect of thymoquinone in an acute Pseudomonas prostatitis rat model. Urol Int 2013;91:474-81. doi: 10.1159/000351261

Escobar J, Pereda J, Arduini A, Sandoval J, Sabater L, Aparisi L, et al. Cross-talk between oxidative stress and pro-inflammatory cytokines in acute pancreatitis: a key role for protein phosphatases. Curr Pharm Des 2009;15:3027-42. doi: 10.2174/138161209789058075

Timucin AC, Basaga H. Pro-apoptotic effects of lipid oxidation products: HNE at the crossroads of NF-kappaB pathway and anti-apoptotic Bcl-2. Free Radic Biol Med 2017;111:209-18. doi: 10.1016/j.freeradbiomed.2016.11.010

Mbow ML, Rutti B, Brossard M. Infiltration of CD4+ CD8+ T cells, and expression of ICAM-1, Ia antigens, IL-1 alpha and TNF-alpha in the skin lesion of BALB/c mice undergoing repeated infestations with nymphal Ixodes ricinus ticks. Immunology 1994;82:596-602.

Jaswal A, Sinha N, Bhadauria M, Shrivastava S, Shukla S. Therapeutic potential of thymoquinone against anti-tuberculosis drugs induced liver damage. Environ Toxicol Pharmacol 2013;36:779-86. doi: 10.1016/j.etap.2013.07.010

Bendele RA, Adams ER, Hoffman WP, Gries CL, Morton DM. Carcinogenicity studies of fluoxetine hydrochloride in rats and mice. Cancer Res 1992;52:6931-5.

Shanthakumari D, Srinivasalu S, Subramanian S. Effect of fluoride intoxication on lipidperoxidation and antioxidant status in experimental rats. Toxicology 2004;204:219-28. doi: 10.1016/j.tox.2004.06.058

Gałecki P, Szemraj J, Bieńkiewicz M, Zboralski K, Gałecka E. Oxidative stress parameters after combined fluoxetine and acetylsalicylic acid therapy in depressive patients. Hum Psychopharmacol 2009;24:277-86. doi: 10.1002/hup.1014

Hajizadeh Z, Soleimani Mehranjani M, Najafi G, Shariatzadeh SMA, Shalizar Jalali A. Black grape seed extract modulates fluoxetine-induced oxidative stress and cytotoxicity in the mouse testis. Jundishapur Journal of Natural Pharmaceutical Products 2016;11. doi: 10.17795/jjnpp-27512

Karimi-Khouzani O, Heidarian E, Amini SA. Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats. Pharmacol Rep 2017;69:830-5. doi: 10.1016/j.pharep.2017.03.011

Nili-Ahmadabadi A, Tavakoli F, Hasanzadeh G, Rahimi H, Sabzevari O. Protective effect of pretreatment with thymoquinone against Aflatoxin B(1) induced liver toxicity in mice. Daru 2011;19:282-7.

Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res 2003;17:299-305. doi: 10.1002/ptr.1309

Aycan IO, Tokgoz O, Tufek A, Alabalik U, Evliyaoglu O, Turgut H, et al. The use of thymoquinone in nephrotoxicity related to acetaminophen. Int J Surg 2015;13:33-7. doi: 10.1016/j.ijsu.2014.11.020

Badary OA, Nagi MN, al-Shabanah OA, al-Sawaf HA, al-Sohaibani MO, al-Bekairi AM. Thymoquinone ameliorates the nephrotoxicity induced by cisplatin in rodents and potentiates its antitumor activity. Can J Physiol Pharmacol 1997;75:1356-61.

Effenberger K, Breyer S, Schobert R. Terpene conjugates of the Nigella sativa seed-oil constituent thymoquinone with enhanced efficacy in cancer cells. Chem Biodivers 2010;7:129-39. doi: 10.1002/cbdv.200900328.

Valizadeh N, Zakeri H, Shafiee A, Sarkhail P, Heshmat R, Sereshti H, et al. Impact of Black seed (Nigella sativa) extract on bone turnover markers in postmenopausal women with osteoporosis. DARU Journal of Pharmaceutical Sciences 2015:20-5.

Heidarian E, Soofiniya Y. Hypolipidemic and hypoglycemic effects of aerial part of Cynara scolymus in streptozotocin-induced diabetic rats. J Med Plant Res 2011;5:2717-23. doi: 1996-0875 ©2011

Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods in Enzymology 233: Elsevier; 1994. p. 357.63-7.

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959;82:70-7. doi: 10.1016/0003-9861(59)90090-6

Bancroft JD, Gamble M. Theory and practice of histological techniques: Elsevier health sciences;2008.

Cesaratto L, Vascotto C, Calligaris S, Tell G. The importance of redox state in liver damage. Ann Hepatol 2004;3:86-92.

Downloads

Additional Files

Published

2023-11-27

Issue

Section

Original Article(s)

How to Cite

Protective Effect of Thymoquinone Against Fluoxetine-Induced Liver Damage Through Enhancing Antioxidant and Anti-Inflammatory System in Male Rats. (2023). Knowledge and Health in Basic Medical Sciences, 18(1), Page:40-50. https://doi.org/10.22100/jkh.v18i1.2875

Most read articles by the same author(s)