Investigating the Morphological Changes and Expression Level of Cytoplasmic Maturation Genes of Immature Oocytes after 24-hour In-Vitro Culture in Infertile Women: A Randomized Control Study
DOI:
https://doi.org/10.22100/jkh.v18i1.3047Abstract
Introduction: According to previous reports, treatment of infertile women who are candidates for in vitro fertilization (IVF), about 15% of the oocytes remains immature. Therefore, finding an efficient approach to make these types of oocytes usable in the clinic, especially in women with limited oocytes, is necessary. One of these approaches is the laboratory culture of immature oocytes in such a way that the expression of genes involved in cytoplasmic maturation increases.
Methods: Forty-eight infertile women candidates for IVF donated their immature oocytes at the time of oocyte retrieval. The obtained immature oocytes were randomly divided into two groups: the control group without in-Vitro culture and the intervention group in the form of 24-hour culture. The total oocytes of both groups (ninety-five immature oocytes) were pooled separately and analyzed by quantitative polymerase chain reaction (q-PCR).
Results: The level of expression of MT-ATP6 and BMP15 genes in the intervention group has a significant increase compared to the control group, with a fold change of 7.867± 3.12 and 6.327 ± 0.78, respectively (P<0.001). Furthermore, according to the morphological changes, 54% of the immature oocytes in the intervention group had resumed meiosis.
Conclusion: Increasing the expression of two cytoplasmic maturation genes, MT-ATP6 and BMP15 can cause the resumption of meiosis in immature oocytes. Therefore, this strategy can be promising in women with low eggs.
References
Halvaei I, Khalili MA, Razi MH, Nottola SA. The effect of immature oocytes quantity on the rates of oocytes maturity and morphology, fertilization, and embryo development in ICSI cycles. J Assist Reprod Genet 2012;29:803-10. doi: 10.1007/s10815-012-9799-6
Chian R, Tan SJRbo. Maturational and developmental competence of cumulus-free immature human oocytes derived from stimulated and intracytoplasmic sperm injection cycles. Reprod Biomed Online 2002;5:125-32. doi: 10.1016/s1472-6483(10)61614-8
Shirasawa H, Terada Y. In vitro maturation of human immature oocytes for fertility preservation and research material. Reprod Med Biol 2017;16:258–67. doi: 10.1002/rmb2.12042
Lin Y-H, Hwang J-L. In vitro maturation of human oocytes. Taiwanese J Obstet Gynecol 2006;45:95-9. doi: 10.1016/S1028-4559(09)60204-7
Li X, Mu Y, Elshewy N, Ding D, Zou H, Chen B, et al. Comparison of IVF and IVM outcomes in the same patient treated with a modified IVM protocol along with an oocytes-maturing system containing melatonin: A pilot study. Life Sci 2021;264:118706. doi: 10.1016/j.lfs.2020.118706
Gasca S, Pellestor F, Assou S, Loup V, Anahory T, Dechaud H, et al. Identifying new human oocyte marker genes: a microarray approach. Reprod Biomed Online 2007;14:175-83. doi: 10.1016/s1472-6483(10)60785-7
Wells D, Patrizio P. Gene expression profiling of human oocytes at different maturational stages and after in vitro maturation. AJOG 2008;198:455.e1-9. doi: 10.1016/j.ajog.2007.12.030
Chong F, Bahena I, Casas E, Betancourt M, Ducolomb Y, González C, et al. ATPase6 participates in pig oocyte maturation in vitro. TIP [online]. 2018;21. doi: 10.22201/fesz.23958723e.2018.2.1
Markholt S, Grøndahl ML, Ernst E, Andersen CY, Ernst E, Lykke-Hartmann K. Global gene analysis of oocytes from early stages in human folliculogenesis shows high expression of novel genes in reproduction. Mol Hum Reprod 2012;18:96-110. doi: 10.1093/molehr/gar083
Hoseini FS, Salsabili N, Akbari-Asbagh F, Aflatoonian R, Aghaee-Bakhtiari SH. Comparison of Gene Expression Profiles in Human Germinal Vesicle Before and After Cytoplasmic Transfer From Mature Oocytes in Iranian Infertile Couples.JFRH 2016;10:71.
Máximo V, Soares P, Lima J, Cameselle-Teijeiro J, Sobrinho-Simoes M. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hürthle cell tumors. Am J Clin Pathol 2002;160:1857-65. doi: 10.1016/S0002-9440(10)61132-7
Mesalam AA, El-Sheikh M, Joo M-D, Khalil AAK, Mesalam A, Ahn M-J, et al. Induction of Oxidative Stress and Mitochondrial Dysfunction by Juglone Affects the Development of Bovine Oocytes Int J Mol Sci 2021;22:168. doi: 10.3390/ijms22010168
Baracca A, Sgarbi G, Mattiazzi M, Casalena G, Pagnotta E, Valentino ML, et al. Biochemical phenotypes associated with the mitochondrial ATP6 gene mutations at nt8993. Biochim Biophys Acta Bioenerg BBA-Bioenergetics 2007;1767:913-9. doi: 10.1016/j.bbabio.2007.05.005
Fanaei H, Khayat S, Halvaei I, Ramezani V, Azizi Y, Kasaeian A, et al. Effects of ascorbic acid on sperm motility, viability, acrosome reaction and DNA integrity in teratozoospermic samples. Iran J Reprod Med 2014;12:103.
Bisht S, Dada R. Oxidative stress: Major executioner in disease pathology, role in sperm DNA damage and preventive strategies. Front Biosci (Schol Ed) 2017;9:420-47. doi: 10.2741/s495
Venkatesh S, Kumar M, Sharma A, Kriplani A, Ammini A, Talwar P, et al. Oxidative stress and ATPase6 mutation is associated with primary ovarian insufficiency. Arch Gynecol Obstet 2010;282:313-8. doi: 10.1007/s00404-010-1444-y
Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update 2008;14:159-77. doi: 10.1093/humupd/dmm040
Sharov AA, Falco G, Piao Y, Poosala S, Becker KG, Zonderman AB, et al. Effects of aging and calorie restriction on the global gene expression profiles of mouse testis and ovary. BMC Biol 2008;6:24. doi: 10.1186/1741-7007-6-24
Wang L-y, Wang D-h, Zou X-y, Xu C-m. Mitochondrial functions on oocytes and preimplantation embryos. J Zhejiang Univ Sci B. 2009; 10(7):483-92. doi: 10.1631/jzus.B0820379
Moore RK, Otsuka F, Shimasaki S. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. JBC 2003;278:304-10. doi: 10.1074/jbc.M207362200
Sanfins A, Rodrigues P, Albertini DFJJoar, genetics. GDF-9 and BMP-15 direct the follicle symphony. J Assist Reprod Genet 2018; 35:1741-50. doi: 10.1007/s10815-018-1268-4
Hussein TS, Thompson JG, Gilchrist RB. Oocyte-secreted factors enhance oocyte developmental competence. Dev Biol 2006;296:514-21. doi: 10.1016/j.ydbio.2006.06.026
Dahan MH, Tan SL, Chung J, Son W-YJHR. Clinical definition paper on in vitro maturation of human oocytes. Hum Reprod 2016;31:1383-6. doi: 10.1093/humrep/dew109
Cha K-Y, Chian R-C. Maturation in vitro of immature human oocytes for clinical use. Hum Reprod Update 1998;4:103-20. doi: 10.1093/humupd/4.2.103
Chian R-C, Buckett WM, Jalil AKA, Son W-Y, Sylvestre C, Rao D, et al. Natural-cycle in vitro fertilization combined with in vitro maturation of immature oocytes is a potential approach in infertility treatment. Fertil Steril 2004;82:1675-8. doi: 10.1016/j.fertnstert.2004.04.060
Eppig JJ. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil Dev 1996;8:485-9. doi: 10.1071/rd9960485
.10. Fulka Jr J, First N, Moor R. Nuclear and cytoplasmic determinants involved in the regulation of mammalian oocyte maturation. Mol Hum Reprod 1998;4:41-9. doi: 10.1093/molehr/4.1.41
Eppig JJ, O’Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod 1996;54:197-207. doi: 10.1095/biolreprod54.1.197
Li Y, Li R-Q, Ou S-B, Zhang N-F, Ren L, Wei L-N, et al. Increased GDF9 and BMP15 mRNA levels in cumulus granulosa cells correlate with oocyte maturation, fertilization, and embryo quality in humans. Reprod Biol Endocrinol 2014;12:1-9. doi: 10.1186/1477-7827-12-81
Cha K-Y, Chian R-CJHRU. Maturation in vitro of immature human oocytes for clinical use. Hum Reprod Update 1998;4:103-20. doi: 10.1093/humupd/4.2.103
Torner H, Brüssow K-P, Alm H, Ratky J, Pöhland R, Tuchscherer A, et al. Mitochondrial aggregation patterns and activity in porcine oocytes and apoptosis in surrounding cumulus cells depends on the stage of pre-ovulatory maturation. Theriogenology 2004;61:1675-89. doi: 10.1016/j.theriogenology.2003.09.013
Assou S, Anahory T, Pantesco V, Le Carrour T, Pellestor F, Klein B, et al. The human cumulus–oocyte complex gene-expression profile. Hum Reprod 2006;21:1705-19. doi: 10.1093/humrep/del065
Virant-Klun I, Knez K, Tomazevic T, Skutella T. Gene expression profiling of human oocytes developed and matured in vivo or in vitro. Bio Med Res Int 2013; 2013:879489 doi:10.1155/2013/879489
Lin ZL, Li YH, Xu YN, Wang QL, Namgoong S, Cui XS, et al. Effects of growth differentiation factor 9 and bone morphogenetic protein 15 on the in vitro maturation of porcine oocytes. Reprod Domest Anim 2014;49:219-27. doi: 10.1111/rda.12254
Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol 1998;12:1809-17. doi: 10.1210/mend.12.12.0206
Otsuka F, Yao Z, Lee T-h, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein-15 identification of target cells and biological functions. JBC 2000;275:39523-8. doi:10.1074/jbc.M007428200
Ye H, Huang G-n, Zeng P-h, Pei L. IVF/ICSI outcomes between cycles with luteal estradiol (E 2) pre-treatment before GnRH antagonist protocol and standard long GnRH agonist protocol: a prospective and randomized study. J Assist Reprod Genet 2009; 26:105. doi: 10.1007/s10815-009-9300-3
Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002;30:e36-e. doi: 10.1093/nar/30.9.e36
Lee S-H, Han J-H, Cho S-W, Cha K-E, Park S-E, Cha K-Y. Mitochondrial ATPase 6 gene expression in unfertilized oocytes and cleavage-stage embryos. Fertil Steril 2000;73:1001-5. doi: 10.1016/s0015-0282(00)00486-6
Bahrami M, Morris MB, Day MLJSr. Amino acid supplementation of a simple inorganic salt solution supports efficient in vitro maturation (IVM) of bovine oocytes. Sci Rep 2019;9:1-10. doi: 10.1038/s41598-019-48038-y
Christopikou D, Karamalegos C, Doriza S, Argyrou M, Sisi P, Davies S, et al. Spindle and chromosome configurations of human oocytes matured in vitro in two different culture media. Reprod Biomed Online 2010;20:639-48. doi: 10.1016/j.rbmo.2010.02.005
Jones GM, Cram DS, Song B, Magli MC, Gianaroli L, Lacham-Kaplan O, et al. Gene expression profiling of human oocytes following in vivo or in vitro maturation. Hum Reprod 2008;23:1138-44. doi: 10.1093/humrep/den085
Yang M, Tao J, Chai M, Wu H, Wang J, Li G, et al. Melatonin improves the quality of inferior bovine oocytes and promoted their subsequent IVF embryo development: mechanisms and results. Molecules 2017;22:2059. doi: 10.3390/molecules22122059
Rios GL, Buschiazzo J, Mucci NC, Kaiser GG, Cesari A, Alberio RJT. Combined epidermal growth factor and hyaluronic acid supplementation of in vitro maturation medium and its impact on bovine oocyte proteome and competence. Theriogenology 2015; 83:874-80. doi: 10.1016/j.theriogenology.2014.11.022
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.