بررسی اثر سولفورافان بر بیان ژنهای CXCR4 و snail در سلولهای سرطانی پستان

نویسندگان

  • Mehdi Bagheri1 1- واحد توسعه پژوهش‌های بالینی- بیمارستان امام حسین (ع)- دانشگاه علوم پزشکی شاهرود- شاهرود- ایران.
  • Mozhgan Fazli2 2- دانشکده پزشکی- دانشگاه علوم پزشکی شاهرود- شاهرود- ایران.
  • Naghmeh Ahmadiankia2,3 3- مرکزتحقیقات پیشگیری از سرطان- دانشگاه علوم پزشکی شاهرود- شاهرود- ایران. orcid http://orcid.org/0000-0001-8309-4935

DOI::

https://doi.org/10.22100/jkh.v13i3.1953

کلمات کلیدی:

سولفورافان، سرطان پستان، متاستاز،CXCR4، snail

چکیده

مقدمه: متاستاز علت اصلی مرگ و میر در اکثر بیماران مبتلا به سرطان پستان است. فاکتور رونویسی snail و مسیر پیام رسانی 1-SDF / CXCR4 از مهمترین عوامل پیشرفت روند متاستاز است. بنابراین، هدف قراردادن EMT و مسیر پیام‌رسانی 1-SDF / CXCR4 یک استراتژی درمانی مهم برای پیشگیری یا درمان متاستاز سرطان پستان محسوب می‌شود. ترکیبات گیاهی به دلیل خواص درمانی، جایگزینی مناسب برای درما‌ن‌های معمول هستند. سولفورافان ((Sulforaphane=SFN ،که ترکیبی گیاهی از خانواده ایزوتیوسیانات است و در سبزیجات یافت می‌شود، به دلیل خواص ضد سرطانی خود مورد توجه زیادی قرار گرفته است. بر این اساس، در این مطالعه اثر غلظت‌های مختلف SFN بر مهاجرت سلول‌های سرطانی پستان و همچنین تأثیر آن بر بیان ژن‌های snail و CXCR4 که نقش مهمی در القاء EMT و متاستاز دارند، بررسی شد.

مواد و روش‌ها: سلول‌هایMDA-MB-231 باغلظت‌های مختلف SFN تیمار شدند. اثر SFN بر روی مهاجرت سلولی بعد از 72 ساعت با استفاده از تست خراشScratch assay) ) بررسی شد. در ادامه تأثیر SFN در میزان بیان snail و CXCR4 با روش Real-time PCR مورد بررسی قرار گرفت.

نتايج: SFN مهاجرت سلول‌های MDA-MB-231 را به طور قابل ملاحظه‌ای کاهش داد. غلظت بالای سولفورافان (40µM) باعث کاهش معنی‌دار بیان CXCR4 شد، اما تغییر معنی‌داری در میزان بیان snail در هیچ یک از غلظت‌های مورد مطالعه ایجاد نشد.

نتیجه‌گیری: با توجه به نتایج به دست آمده سولفورافان می‌تواند به عنوان عاملی برای کاهش متاستاز سرطان پستان در نظر گرفته شود.

مراجع

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359-86. doi:10.1002/ijc.29210

DeSantis C, Ma J, Bryan L, Jemal A. Breast cancer statistics, 2013. CA Cancer J Clin 2014;64:52-62. doi:10.3322/caac.21203

Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69-90. doi:10.3322/caac.20107

Tevaarwerk AJ, Gray RJ, Schneider BP, Smith ML, Wagner LI, Fetting JH, et al. Survival in patients with metastatic recurrent breast cancer after adjuvant chemotherapy: little evidence of improvement over the past 30 years. Cancer 2013;119:1140-8. doi:10.1002/cncr.27819

Chakrabarti R1, Hwang J, Andres Blanco M, Wei Y, Lukačišin M, Romano RA, et al. Elf5 inhibits the epithelial–mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat Cell Biol 2012;14:1212-22. doi:10.1038/ncb2607

Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002;2:563-72. doi:10.1038/nrc865

Xu C, Zhao H, Chen H, Yao Q. CXCR4 in breast cancer: oncogenic role and therapeutic targeting. Drug Des Devel Ther 2015;9:4953-64. doi:10.2147/DDDT.S84932

Salvucci O, Yao L, Villalba S, Sajewicz A, Pittaluga S, Tosato G. Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood 2002;99:2703-11.

Dewan MZ, Ahmed S, Iwasaki Y, Ohba K, Toi M, Yamamoto N. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother 2006;60:273-6. doi:10.1016/j.biopha.2006.06.004

Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410:50-6. doi:10.1038/35065016

Radisky DC. Epithelial-mesenchymal transition. J Cell Sci 2005;118:4325-6. doi:10.1242/jcs.02552

Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2002;2:442-54. doi:10.1038/nrc822

Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 2002;21:3241-6. doi:10.1038/sj.onc.1205416

Darash-Yahana M, Pikarsky E, Abramovitch R, Zeira E, Pal B, Karplus R, et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J 2004;18:1240-2. doi:10.1096/fj.03-0935fje

Olmeda D, Jorda M, Peinado H, Fabra A, Cano A. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene 2007;26:1862-74. doi:10.1038/sj.onc.1209997

Coseri S. Natural products and their analogues as efficient anticancer drugs. Mini Rev Med Chem 2009;9:560-71.

Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009;136:823-37. doi:10.1016/j.cell.2009.02.024

Kensler TW, Egner PA, Agyeman AS, Visvanathan K, Groopman JD, Chen JG, et al. Keap1-nrf2 signaling: a target for cancer prevention by sulforaphane. Top Curr Chem 2013;329:163-77. doi:10.1007/128_2012_339

Lenzi M, Fimognari C, Hrelia P. Sulforaphane as a promising molecule for fighting cancer. Cancer Treat Res 2014;159:207-23. doi:10.1007/978-3-642-38007-5_12

Di Pasqua AJ, Hong C, Wu MY, McCracken E, Wang X, Mi L, et al. Sensitization of non-small cell lung cancer cells to cisplatin by naturally occurring isothiocyanates. Chem Res Toxicol 2010;23:1307-9. doi:10.1021/tx100187f

Vyas AR, Singh SV. Functional relevance of D, L-sulforaphane-mediated induction of vimentin and plasminogen activator inhibitor-1 in human prostate cancer cells. Eur J Nutr 2014;53:843-52. doi:10.1007/s00394-013-0588-5

Tang L, Zirpoli GR, Guru K, Moysich KB, Zhang Y, Ambrosone CB, et al. Consumption of raw cruciferous vegetables is inversely associated with bladder cancer risk. Cancer Epidemiol Biomarkers Prev 2008;17:938-44. doi:10.1158/1055-9965.EPI-07-2502

Li W, Khor TO, Xu C, Shen G, Jeong WS, Yu S, et al. Activation of Nrf2-antioxidant signaling attenuates NFκB-inflammatory response and elicits apoptosis. Biochem Pharmacol 2008;76:1485-9. doi:10.1016/j.bcp.2008.07.017

Kensler TW, Egner PA, Agyeman AS, Visvanathan K, Groopman JD, Chen JG, et al. Keap1–nrf2 signaling: a target for cancer prevention by sulforaphane. Top Curr Chem 2013;329:163-77. doi:10.1007/128_2012_339

Wang L, Tian Z, Yang Q, Li H, Guan H, Shi B, et al. Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway. Oncotarget 2015;6:25917-31. doi:10.18632/oncotarget.4542

Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004;4:540-50. doi:10.1038/nrc1388

Kim B, Park B. Baohuoside I suppresses invasion of cervical and breast cancer cells through the downregulation of CXCR4 chemokine receptor expression. Biochemistry 2014;53:7562-9. doi:10.1021/bi5011927

Chen XP, Qian LL, Jiang H, Chen JH. Ginsenoside Rg3 inhibits CXCR 4 expression and related migrations in a breast cancer cell line. Int J Clin Oncol 2011;16:519-23. doi:10.1007/s10147-011-0222-6

Hirbe AC, Morgan EA, Weilbaecher KN. The CXCR4/SDF-1 chemokine axis: a potential therapeutic target for bone metastases? Curr Pharm Des 2010;16:1284-90.

Hu CT, Wu JR, Chang TY, Cheng CC, Wu WS. The transcriptional factor Snail simultaneously triggers cell cycle arrest and migration of human hepatoma HepG2. J Biomed Sci 2008;15:343-55. doi:10.1007/s11373-007-9230-y

Chen J, Chang H, Peng X, Gu Y, Yi L, Zhang Q, et al. 3, 6-dihydroxyflavone suppresses the epithelial-mesenchymal transition in breast cancer cells by inhibiting the Notch signaling pathway. Sci Rep 2016;6:28858. doi:10.1038/srep28858

دانلود

چاپ شده

2018-11-19

شماره

نوع مقاله

مقاله پژوهشي

مقالات بیشتر خوانده شده از همین نویسنده

<< < 29 30 31 32 33 34 35 36 37 38 > >>