The Effect of an Interval Exercise Period (HIIT) on MTNR1B Gene Expression, Insulin and Glucose Levels in Type 2 Diabetic Rats

Authors

DOI:

https://doi.org/10.22100/jkh.v14i1.2151

Keywords:

MTNR1B expression, Interval training, Rat with type II diabetes, Glucose level and insulin level.

Abstract

Introduction: MTNR1B genes expression is associated with increase of the of type 2 diabetes . The objective of this study was to evaluate the effect of 12 weeks of high intensity intermittent exercise on MTNR1B gene, glucose and insulin levels in diabetic rats

Methods: In this study, 30 male Wistar rats weighing 220± 20g were divided into three groups control, diabetic and HIIT/diabetic groups. Administration of streptozotocin (STZ) and nicotinamide (NA) induced experimental diabetes in the rat. Interval Exercise (HIIT) performed for 12 weeks (5 times/30 mintes). The glucose concentration examined using oxidase colorimetric method, insulin by ELISA and gene expression was measured by RT-Real time PCR. All statistical analysis performed using s SPSS.

Results: Exercise program decreased fasting blood glucose and serum insulin in diabetic group compared to the control (P=0.001). Intensive interval training decreased MTNR1B gene expression in pancreatic tissue compared to diabetic control group (P=0.023). There was a significant correlation between the expression of MTNR1B and serum insulin (P=0.039, r=-0.84)

Conclusion: The results showed that twelve weeks of high intensity intermittent exercise decrease blood glucose and increase serum insulin and decrease of MTNR1B gene expression in pancreatic tissue.

References

Hogan P, Dall T, Nikolov P. Economic costs of diabetes in the US in 2002. ADA. Diabetes Care 2003;26:917-32. doi:10.2337/diacare.26.3.917

Risch N. Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 1990;46:222-8.

Ng SW, Popkin BM. Time use and physical activity: a shift away from movement across the globe. Obes Rev 2012;13:659–80. doi:10.1111/j.1467-789X.2011.00982.x

McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med 2010; 363: 2339-2350. doi: 10.1056/NEJMra0906948

Almgren P, Lehtovirta M, Isomaa B, Sarelin L, Taskinen MR, Lyssenko V, et al. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 2011;54:2811-9. doi: 10.1007/s00125-011-2267-5

Groop L, Forsblom C, Lehtovirta M, Tuomi T, Karanko S, Nissén M, et al. Metabolic consequences of a family history of NIDDM (the Botnia study): evidence for sex-specific parental effects. Diabetes. 1996;45:1585-93. doi: 10.2337/diab.45.11.1585

Isomaa B, Forsen B, Lahti K, Holmstrom N, Waden J, et al. A family history of diabetes is associated with reduced physical fitness in the Prevalence, Prediction and Prevention of Diabetes (PPP)-Botnia study. Diabetologia 2010; 53: 1709–1713. doi: 10.1007/s00125-010-1776-y

Lyssenko V, Nagorny CL, Erdos MR, Wierup N, Jonsson A, Spégel P, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired earlyinsulin secretion. Nat Genet 2009; 41:82-88. doi: 10.1038/ng.288

Ciaran J, McMullan, et al. Melatonin Secretion and the Incidence of Type 2 Diabetes. JAMA 2013;13:309. doi: 10.1001/jama.2013.2710

Lisa Nainggolan. Low levels of melatonin up risk for type 2 diabetes. Medscape Medical News 2013.

Yaghootkar H ,Timothy M Frayling. Recent progress in the use of genetics to understand links between type 2 diabetes and related metabolic traits. Genome Biology 2013;14:203. doi:10.1186/gb-2013-14-3-203

Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N, Thorleifsson G, et al. Variants in MTNR1B influence fasting glucose levels. Nat Genet 2009;41:77-81. doi: 10.1038/ng.290

Been LF, Hatfield JL, Shankar A, Aston CE, Ralhan S, Wander GS, et al. A low frequency variant within the GWAS locus of MTNR1B affects fasting glucose concentrations: genetic risk is modulated by obesity, Nutr Metab Cardiovasc Dis 2012;22:944-51. doi: 10.1016/j.numecd.2011.01.006

Bonnefond A, Clément N, Fawcett K, Yengo L, Vaillant E, Guillaume JL, et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet 2012; 44:297-301. doi: 10.1038/ng.1053

Larsen S, Skaaby S, Helge JW, Dela F. Effects of exercise training on mitochondrial function in patients with type 2 diabetes.World J Diabetes 2014;5:482-92. doi: 10.4239/wjd.v5.i4.482

Marwick TH, Hordern MD, Miller T, Chyun DA, Bertoni AG, Blumenthal RS, et al. Exercise training for type 2 diabetes mellitus: impact on cardiovascular risk: a scientific statement from the American Heart Association. Circulation 2009;119:3244-62. doi: 10.1161/CIRCULATIONAHA

Kjaer M, Hollenbeck CB, Frey-Hewitt B, Galbo H, HaskellW, Reaven GM. Glucoregulation and hormonal responses to maximal exercise in non-insulin-dependent diabetes. J Appl Physiol 1990; 68:2067–2074. doi: 10.1152/jappl.1990.68.5.2067

Gillen JB, Little JP, Punthakee Z, Tarnopolsky MA, Riddell MC, Gibala MJ. Acute high-intensity interval exercise reduces the postprandial glucose response and prevalence of hyperglycaemia in patients with type 2 diabetes. Diabetes Obes Metab 2012;14:575-7. doi: 10.1111/j.1463-1326.2012.01564.x

Eriksen L, Dahl-Petersen I, Haugaard SB, Dela F. Comparison of the effect of multiple short-duration with single long-duration exercise sessions on glucose homeostasis in type 2 diabetes mellitus. Diabetologia 2007;50:2245-2253. doi:10.1007/s00125-007-0783-0

Goedecke JH, Dave JA, Faulenbach MV, Utzschneider KM, Lambert EV,West S, et al. Insulin response in relation to insulin sensitivity: an appropriate beta-cell response in black South African women. Diabetes Care 2009;32:860-5. doi: 10.2337/dc08-2048

Madsen SM, Thorup AC, Overgaard K, Jeppesen PB. High Intensity Interval Training Improves Glycaemic Control and Pancreatic β Cell Function of Type 2 Diabetes Patients. PLoS One 2015;10:0133286. doi: 10.1371/journal.pone.0133286

Taylor JD, Fletcher JP, Mathis RA, Cade WT. Effects of moderate- versus high-intensity exercise training on physical fitness and physical function in people with type 2 diabetes: a randomized clinical trial. Phys Ther 2014;94:1720-30. doi: 10.2522/ptj.20140097

McCarthy MI, Zeggini E: Genome-wide association studies in type 2 diabetes. Curr Diab Rep 2009;9:164-171.

Pierre W, Gildas AJ, Ulrich MC, Modeste WN, Benoit NT, Albert K. Hypoglycemic and hypolipidemic effects of Bersama engleriana leaves in nicotinamide streptozotocin-induced type 2 diabetic rats. BMC Complementary and Alternative Medicine 2012;12:264-69. doi: 10.1186/1472-6882-12-264

Staiger H, Machicao F, Schäfer SA, Kirchhoff K, Kantartzis K, Guthoff M, et al. Polymorphisms within the novel type 2 diabetes risk locus MTNR1B determine beta-cell function. PLoS One 2008;3:e3962. doi: 10.1371/journal.pone.0003962

Chambers JC, Zhang W, Zabaneh D, Sehmi J, Jain P, McCarthy MI, et al. Common genetic variation near melatonin receptor MTNR1B contributes to raised plasma glucose and increased risk of type 2 diabetes among Indian Asians and European Caucasians. Diabetes 2009;58:2703-8. doi: 10.2337/db08-1805

Park S, Hong SM, Lee JE, Sung SR. Exercise improves glucose homeostasis that has been impaired by a high-fat diet by potentiating pancreatic B- cell function and mass through IRS2 in diabetic rats. J Appl Physiol 2007;103:1764-71. doi:10.1152/japplphysiol.00434.2007

Sigal RJ, Armstrong MJ, Colby P, et al. Canadian diabetes association 2013 clinical practice guidelines for the prevention and management of diabetes in Canada. Can J Diabetes 2013;37:S1-3. doi: 0.1016/j.jcjd.2013.01.009

Adeghate E, Schattner P, Dunn E. An update on the etiology and epidemiology of diabetes mellitus. Ann NY Acad Sci 2006;1084,1-29. doi:10.1196/annals.1372.029

Amra C, Alibegovic, Mette P. Sonne, Lise Højbjerre, Torben Hansen, Oluf Pedersen, Gerrit van Hall, et al The T-allele of TCF7L2 rs7903146 associates with a reduced compensation of insulin secretion for insulin resistance induced by 9 days of bed rest. Diabetes 2010; 59:836-43. doi: 10.2337/db09-0918

Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010; 42:105-116. doi: 10.1038/ng.520

Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346:393-403. doi: 10.1056/NEJMoa012512

Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344:1343-1350. doi:10.1056/NEJM200105033441801

Teixeira-Lemos E, Nunes S, Teixeira F, Reis F. Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties. Cardiovasc Diabetol 2011;10:1-15. doi: 10.1186/1475-2840-10-12

Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 2011;11:607-15. doi: 10.1038/nri3041

Stephan F, E Praet , Luc J. C, van Loon. Exercise therapy in Type 2 diabetes. Acta Diabetol 2009;46:263-278. doi: 10.1007/s00592-009-0129-0

Joy A. Dugan, CSCS, MPH, PA-C. Exercise recommendations for patients with type 2 diabetes. JAAPA 2016;29:13-8. doi: 10.1097/01.JAA.0000475460.77476.f6

Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care 2010;33:e147-67. doi: 10.2337/dc10-9990

Duncan GE, Anton SD, Sydeman SJ, Newton RL Jr, Corsica JA, Durning PE, et al. Prescribing exercise at varied levels of intensity and frequency: a randomized trial. Arch Intern Med 2005;165:2362-9. doi:10.1001/archinte.165.20.2362

Bjorntorp P, Fahlen M, Grimby G, Gustafson A, Holm J, Renstrom P, et al. Carbohydrate and lipid metabolism in middle-aged, physically well-trained men. Metabolism 1972;21:1037-44. doi: 10.1016/0026-0495(72)90034-0

Gibala MJ. High intensity interval training: new insights. Sports Science Exchange 2007;20:1-8.

Shaban N, Kenno KA, Milne KJ. The effects of a 2 weekmodified high intensity interval training program on the homeostatic model of insulin resistance (HOMA-IR) in adults with type 2 diabetes. J Sports Med Phys Fitness 2014;54:203-9.

Little JP, Gillen JB, Percival ME, Safdar A, Tarnopolsky MA, Punthakee Z, et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol 2011;111:1554-60. doi: 10.1152/japplphysiol.00921

Karstoft K,Winding K, Knudsen SH, James NG, Scheel MM, Olesen J, et al. Mechanisms behind the superior effects of interval vs continuous training on glycaemic control in individuals with type 2 diabetes: a randomised controlled trial. Diabetologia 2014;57:2081-93. doi: 10.1007/s00125-014-3334-5

Slentz CA, Tanner CJ, Bateman LA, Durheim MT, Huffman KM, Houmard JA, et al. Effects of exercise training intensity on pancreatic beta-cell function. Diabetes Care 2009;32:1807-11. doi: 10.2337/dc09-0032

Mikus CR, Oberlin DJ, Libla J, Boyle LJ, Thyfault JP. Glycaemic control is improved by 7 days of aerobic exercise training in patients with type 2 diabetes. Diabetologia 2012;55:1417-23. doi: 10.1007/s00125-012-2490-8

Published

2019-06-18

Issue

Section

Original Article(s)

How to Cite

The Effect of an Interval Exercise Period (HIIT) on MTNR1B Gene Expression, Insulin and Glucose Levels in Type 2 Diabetic Rats. (2019). Knowledge and Health in Basic Medical Sciences, 14(1), Page:28-35. https://doi.org/10.22100/jkh.v14i1.2151