Using Glutamic Acid, Phenylalanine and Tryptophan to Synthesize Capped Gold Nanoparticles

Authors

  • Davood Zare دانشگاه اصفهان- دانشكده علوم- گروه شيمي.
  • Azim Akbarzadeh انستيتو پاستور ايران- بخش پایلوت بيوتكنولوژي
  • Shahram Tangestaninejad دانشگاه اصفهان- دانشكده علوم- گروه شيمي
  • Mohammad Barkhi پژوهشکده بيوتكنولوژي كشاورزي كرج- گروه تحقيقات نانو
  • Nasim Bararpour انستيتو پاستور ايران- بخش پایلوت بيوتكنولوژي
  • Kamyar Khoshnevisan دانشگاه اصفهان- دانشكده مهندسي- گروه بيوتكنولوژي.

DOI:

https://doi.org/10.22100/jkh.v5i4.157

Keywords:

Capped gold nanoparticles, Glutamic acid, Phenylalanine, Tryptophan.

Abstract

Introduction: The study and investigation of gold nanoparticles produced by amino acid is one of the interesting and applied issues in nanotechnology. In this study, amino acids were used to reduce gold cations as well as an agent to cap gold nanoparticles.  In fact, strong bound of amino groups to amino acid and protein on the gold nanoparticles surface indicate the medical applications of these materials.

Methods: In this study, gold nanoparticles were prepared and functionalized by using solution reduction containing gold cations with optimum concentration (0.005 M), and also prepared by using glutamic acid, phenylalanine and tryptophan with optimum concentration (0.025 M).

Results: The investigation of optimum condition for gold solution and amino acids and also determination of gold nanoparticles were done by UV-Vis. The nanoparticles size were reported 5-20, 10-20 and 20-30 nm respectively by transmission electron microscopy and dynamic light scattering techniques, which is appropriate for biological activities.

Conclusion: The comparison of the data from experimental and quantum calculations demonstrated that amino acids have strong band when they are conjugated by anion state. Free carboxylic groups of capped gold nanoparticles with glutamic acid are one of the suitable and capable beads for binding to biological agents.

References

Wang Y, Herron N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J Phys Chem 1991;95:525-532.

Colvin VL, Schlamp MC, Alivisatos AP. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994;370:354-357.

Haruta M, Kobayashi T, Sano H, Yamada N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 C. Chem Lett 1987;2:405-408.

Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 1996;272:1924-1926.

Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA. Plasmonics- a route to nanoscale optical devices. Adv Mater 2001;19:1501-1505.

Turkevich J, Stevenson PC, Hillier J. Preparation of 2.5×10-4 M gold colloids (Sodium citrate reduction method) Discuss. Faraday Soc 1951;11:55-59.

Duff DG, Baiker A, Edwards PP. A new hydrosol of gold clusters. 1. formation and particle size variation. Langmuir 1993;9:2301-2309.

Henglein A. Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions. Langmuir 1999;15:6738-6744.

Mizukoshi Y, Fujimoto T, Nagata Y, Oshima R, Maeda Y. Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J Phys Chem B 2000;104:6028-6032.

Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiolderivatised gold nanoparticles in a two-phase Liquid–Liquid system. J Chem Soc Chem Commun 1994;7:801-802.

Ingram RS, Hostetler MJ, Murray RW. Poly-hetero-ω-functionalized alkanethiolate-stabilized gold cluster compounds. J Am Chem Soc 1997;119:9175-9178.

Storhoff JJ, Mirkin CA. Programmed materials synthesis with DNA. Chem Rev 1999;99:1849-1862.

Niemeyer CM. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 2001;40:4128-4158.

Bielinska A, Eichman JD, Lee I, Baker JRJr, Balogh L. Imaging {Au0-PAMAM} gold-dendrimer nanocomposites in cells. J Nanopart Res 2002;4:395-403.

Johnson SR, Evans SD, Mahon SW, Ulman A. Alkanethiol molecules containing an aromatic moiety self-assembled onto gold clusters. Langmuir 1997;13:51-7.

Leff DV, Brandt L, Heath JR. Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir 1996;12:4723-4730.

Selvakannan PR, Mandal S, Phadtare S, Gole A, Pasricha R, Adyanthaya SD, et al. Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J Colloid Interface Sci 2004;269:97-102.

Gole A, Dash C, Soman C, Sainkar SR, Rao M, Sastry M. On the preparation, characterization, and enzymatic activity of fungal protease-gold colloid bioconjugates. Bioconjugate Chem 2001;12:684-690.

Joshi H, Shirude P, Bansal V, Ganesh KN, Sastry M. Isothermal titration calorimetry studies on the binding of amino acids to gold nanoparticles. J Phys Chem B 2004;108:11535-11540.

Bhargava SK, Booth JM, Agrawal S, Coloe P, Kar G. Gold nanoparticle formation during bromoaurate reduction by amino acids. Langmuir 2005;21:5949-5956.

Si S, Bhattacharjee RR, Banerjee A, Mandal TK. A mechanistic and kinetic study of the formation of metal nanoparticles by using synthetic tyrosine-based oligopeptides. Chem Eur J 2006;12:1256-1265.

Humbert C, Busson B, Abid J-P, Six C, Girault HH, Tadjeddine A. Self-assembled organic monolayers on gold nanoparticles: A study by sum-frequency generation combined with UV–vis spectroscopy. Electrochimica Acta 2005;50:3101-3110.

Kumar JB, Raj CR. Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. Langmuir 2007;23:4064-4070.

Sardar R, Park J-W, Shumaker-Parry JS. Polymer-induced synthesis of stable gold and silver nanoparticles and subsequent ligand exchange in water. Langmuir 2007;23:11883-11889.

Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL. Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 1997;101:3706-3712.

Schaaf TG, Shafigullen MN, Khoury JT, Vezmar I, Whetten RL, Cullen WG, et al. Isolation of smaller nanocrystal au molecules: robust quantum effects in optical spectra. J Phys Chem B 1997;101:7885-7891.

Zaitoun MA, Mason WR, Lin CT. Magnetic circular dichroism spectra for colloidal gold nanoparticles in xerogels at 5.5 K. J Phys Chem B 2001;105:6780-6784.

Melinger JS, Kleiman VD, McMorrow D, Grohn F, Bauer BJ, Amis E. Ultrafast Dynamics of gold-based nanocomposite materials. J Phys Chem A 2003;107(18):3424-3431.

Papavassiliou GC. Optical properties of small inorganic and organic metal particles. Prog Solid State Chem 1979;12:185-271.

Pakiari AH, Jamshidi Z. Interaction of amino acids with gold and silver clusters. J Phys Chem A 2007;111(20):4391-4396.

Mandal S, Phadtare S, Sastry M. Interfacing biology with nanoparticles. Current Applied Physics 2005;5:118–127.

Yoo EJ, Li T, Park HG, Chang YK. Size-dependent flocculation behavior of colloidal Au nanoparticles modified with various biomolecules. Ultramicroscopy 2008;108(10):1273-1277.

Published

2010-04-24

Issue

Section

Original Article(s)

How to Cite

Using Glutamic Acid, Phenylalanine and Tryptophan to Synthesize Capped Gold Nanoparticles. (2010). Knowledge and Health in Basic Medical Sciences, 5(4), 20-26. https://doi.org/10.22100/jkh.v5i4.157

Most read articles by the same author(s)

<< < 51 52 53 54 55 56 57 58 59 60 > >>