بررسی تغییر میزان بیان پلاسمایی miRNA-34a و miRNA-18a در نمونه های بالینی افراد مبتلا به سرطان روده بزرگ

Sara Eslamizadeh 1,2
, Mansour Heidari 3
, Hossein Ghazi 4
, Ebrahim Faghihloo 5
, Abolfazl Akbari * 6 0000-0002-2151-4639
1- گروه ژنتیک مولکولی، دانشکده زیست‌شناسی، دانشگاه آزاد اسلامی واحد مرودشت، فارس، ایران.
2- گروه ژنتیک مولکولی، دانشکده زیست‌شناسی، دانشگاه آزاد اسلامی واحد علوم تحقیقات فارس، فارس، ایران.
3- گروه ژنتیک مولکولی، دانشکده زیست‌شناسی مولکولی و ژنتیک، دانشگاه آزاد اسلامی واحد بوشهر، بوشهر، ایران.
4- مرکز تحقیقات چشم پزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران.
5- گروه میکروبیولوژی، دانشکده علوم پزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران.
6- مرکز تحقیقات کولورکتال، دانشگاه علوم پزشکی ایران، تهران، ایران.

چکیده


مقدمه: تشخیص زودهنگام تومورهای سرطان روده بزرگ یکی از مهمترین چالش‌های مدیریت سرطان است. miRNAs  گروهـی از RNA هـای غیرکـدکننده هسـتند که بیان ژن‌های هـدف را در سطح پس از رونویسی تنظیـم مـی‌کننـد. عـدم تنظیـم miRNAs در ارتباط بـا انواع سرطان‌ها از جمله سرطان روده بزرگ گزارش شده است. هدف از این مطالعه بررسی میزان تغییر بیان miRNAs در نمونه‌های پلاسمای بیماران سرطان روده بزرگ و ارزیابی قدرت تشخیصی آنها بود.

مواد و روش‌ها: در این مطالعه موردی-شاهدی 74 نمونه پلاسما از بیماران مبتلا به سرطان روده بزرگ (stage II-IV) و 36 نمونه سالم به عنوان کنترل جمع‌آوری شدند.  miR-34a ,miR-181b ,miR-146b  miR-18aانتخاب و میزان بیان آنها با تکنیک qRT-PCR ارزیابی شد. سپس آنالیزهای آماری برای بررسی ارتباط میزان بیان miRNAs با ویژگی‌های کلینیکوپاتولوژیک بیمار انجام شد.

نتایج: میزان بیان miR-18a و miR-34a در نمونه‌های پلاسمای بیماران سرطانی (stage II-IV)نسبت به نمونه‌های کنترل افزایش معناداری را نشان داد(P<0.001) . سطح زیر نمودار ROC (AUC) برایmiR-18a  با AUC (0.85) و P<0.001 و برایmiR-34a  با AUC (0.74) و P<0.001 معنی‌دار بود. miR-181b و miR-146b تغییر بیان چشمگیری را بین نمونه‌های بیمار و کنترل نشان ندادند .(P>0.05)

نتیجه‌گیری: نتایج مطالعه ما نشان داد که سطوح بیان miR-34a و miR-18a پلاسمایی بیماران سرطان روده بزرگ به طور قابل ملاحظه‌ای نسبت به کنترل افزایش می‌یابند که ممکن است بتوانند برای روشن کردن مکانیزم‌های مولکولی مسیر سرطان‌زایی روده بزرگ کمک کنند و نیز به عنوان بیومارکرهای تشخیصی تومور مطرح باشند.


واژه های کلیدی


پلاسما، سرطان روده بزرگ، miR-34a، miR-18a

تمام متن:

PDF

مراجع


Akbari A, Mobini GR, Maghsoudi R, Akhtari J, Faghihloo E, Farahnejad Z. Modulation of transforming growth factorbeta signaling transducers in colon adenocarcinoma cells induced by staphylococcal enterotoxin B. Mol Med Rep 2016;13:909-14. doi:10.3892/mmr.2015.4596

Abastabar M, Akbari A, Akhtari J, Hedayati MT, Shokohi T, Mehrad-Majd H, et al. In vitro antitumor activity of patulin on cervical and colorectal cancer cell lines. Curr Med Mycol 2017;3(1):25-9. doi:10.18869/acadpub.cmm.3.1.25

Akbari A, Ghahremani MH, Mobini GR, Abastabar M, Akhtari J, Bolhassani M, et al. Down-regulation of miR-135b in colon adenocarcinoma induced by a TGF-β receptor I kinase inhibitor (SD-208). Iran J Basic Med Sci 2015;18(9):856-61.

Eslamizadeh S, Heidari M, Agah S, Faghihloo E, Ghazi H, Mirzaei A, et al. The Role of MicroRNA Signature as Diagnostic Biomarkers in Different Clinical Stages of Colorectal Cancer. Cell J 2018;20(2):220-30. doi:10.22074/cellj.2018.5366

Emami SS, Akbari A, Zare AA, Agah S, Masoodi M, Talebi A, et al. MicroRNA Expression Levels and Histopathological Features of Colorectal Cancer. J Gastrointest Cancer 2018. doi:10.1007/s12029-018-0055-x

Mobini GR, Ghahremani MH, Amanpour S, Dehpour AR, Akbari A, Hoseiniharouni SM, et al. Transforming growth factor beta-induced factor 2-linked X (TGIF2LX) regulates two morphogenesis genes, Nir1 and Nir2 in human colorectal. Acta Med Iran 2016;54(5):302-7.

Agah S, Akbari A, Talebi A, Masoudi M, Sarveazad A, Mirzaei A, et al. Quantification of plasma cell-free circulating DNA at different stages of colorectal cancer. Cancer Invest 2017;35(10):625-32. doi:10.1080/07357907.2017.1408814

Fadakar P, Akbari A, Ghassemi F, Mobini GR, Mohebi M, Bolhassani M, et al. Evaluation of SD-208, a TGF-β-RI kinase inhibitor, as an anticancer agent in retinoblastoma. Acta Med Iran 2016;54(6):352-8.

Mobini GR, Ghafari A, Amanpour S, Fateh R, Ghahremani MH, Muhammadnejad S, et al. In vivo identification of novel TGIF2LX target genes in colorectal adenocarcinoma using the cDNA-AFLP method. Arab J Gastroenterol 2018;19(2):65-70. doi:10.1016/j.ajg.2018.05.001

Komatsu S, Ichikawa D, Takeshita H, Morimura R, Hirajima S, Tsujiura M, et al. Circulating miR-18a: a sensitive cancer screening biomarker in human cancer. In Vivo 2014;28(3):293-7.

Humphreys KJ, McKinnon RA, Michael MZ. miR-18a inhibits CDC42 and plays a tumour suppressor role in colorectal cancer cells. PLoS One 2014;9(11):e112288. doi:10.1371/journal.pone.0112288

Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A 2007;104(39):15472-7. doi:10.1073/pnas.0707351104

Aherne ST, Madden SF, Hughes DJ, Pardini B, Naccarati A, Levy M, et al. Circulating miRNAs miR-34a and miR-150 associated with colorectal cancer progression. BMC cancer 2015;15:329. doi:10.1186/s12885-015-1327-5

Vashisht A, Tanwar J, Motiani RK. Regulation of proto-oncogene Orai3 by miR18a/b and miR34a. Cell calcium 2018;75:101-11. doi:10.1016/j.ceca.2018.08.006

Bu P, Chen KY, Chen JH, Wang L, Walters J, Shin YJ, et al. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell stem cell 2013;12(5):602-15. doi:10.1016/j.stem.2013.03.002

Corkum CP, Ings DP, Burgess C, Karwowska S, Kroll W, Michalak TI. Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPT™) and standard density gradient. BMC Immunol 2015;16:48. doi:10.1186/s12865-015-0113-0

Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, et al. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene 2007;26(41):6099-105. doi:10.1038/sj.onc.1210425

Akbari A, Agah S, Heidari M, Mobini GR, Faghihloo E, Sarveazad A, et al. Homeodomain protein transforming growth factor beta-induced factor 2 like, X-linked function in colon adenocarcinoma cells. Asian Pac J Cancer Prev 2017;(18):2101-8. doi:10.22034/APJCP.2017.18.8.2101

Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K, et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PloS one 2014;9(4):e92921. doi:10.1371/journal.pone.0092921

Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008;105(30):10513-8. doi:10.1073/pnas.0804549105

Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ. Comparing the MicroRNA spectrum between serum and plasma. PloS one 2012;7(7):e41561. doi:10.1371/journal.pone.0041561

Mirzaei A, Madjd Z, Kadijani AA, Tavakoli-Yaraki M, Modarresi MH, Verdi J, et al. Evaluation of circulating cellular DCLK1 protein, as the most promising colorectal cancer stem cell marker, using immunoassay based methods. Cancer Biomarkers 2016;17(3):301-11. doi:10.3233/CBM-160642

Brunet Vega A, Pericay C, Moya I, Ferrer A, Dotor E, Pisa A, et al. microRNA expression profile in stage III colorectal cancer: circulating miR-18a and miR-29a as promising biomarkers. Oncol Rep 2013;30(1):320-6. doi:10.3892/or.2013.2475

Tsang WP, Kwok TT. The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-Ras. Carcinogenesis 2009;30(6):953-9. doi:10.1093/carcin/bgp094

Matsumura T, Sugimachi K, Iinuma H, Takahashi Y, Kurashige J, Sawada G, et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer 2015;113(2):275-81. doi:10.1038/bjc.2015.201

Yan LH, Chen ZN, Li L, Chen J, Mo XW, Qin YZ, et al. E2f-1 promotes DAPK2-induced anti-tumor immunity of gastric cancer cells by targeting miR-34a. Tumour Biol 2016. doi:10.1007/s13277-016-5446-7

De Antonellis P, Carotenuto M, Vandenbussche J, De Vita G, Ferrucci V, Medaglia C, et al. Early targets of miR-34a in neuroblastoma. Mol Cell Proteomics 2014;13(8):2114-31. doi:10.1074/mcp.M113.035808

Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 2008;105(36):13421-6. doi:10.1073/pnas.0801613105

Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007;26(5):745-52. doi:10.1016/j.molcel.2007.05.010

Wang M, Zhang P, Li Y, Liu G, Zhou B, Zhan L, et al. The quantitative analysis by stem-loop real-time PCR revealed the microRNA-34a, microRNA-155 and microRNA-200c overexpression in human colorectal cancer. Med Oncol 2012;29(5):3113-8. doi:10.1007/s12032-012-0241-9

Agostini M, Knight RA. miR-34: from bench to bedside. Oncotarget 2014;5(4):872-81. doi:10.18632/oncotarget.1825

Rokavec M, Li H, Jiang L, Hermeking H. The p53/miR-34 axis in development and disease. J Mol Cell Biol 2014;6(3):214-30. doi:10.1093/jmcb/mju003




DOI: 10.22100/jkh.v13i3.2058

Smiley face
محتویات مجله دانش و تندرستي در علوم پایه پزشکی تحت پوشش قوانین حق نشر و تکثیر بین المللی (CC-BY-NC) است. طبق این مجوز همه استفاده کنندگان اجازه مطالعه، کپی و توزیع مطالب مجله برای مقاصد غیر تجاری منوط به ارجاع به کار دارند.
©این سایت با استفاده از ojs ایجاد شده است. انتشار مطالب سایت با ذکر منبع بلامانع است.